2020-02-17 13:03:41 +00:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
2020-04-03 21:57:34 +00:00
|
|
|
class UNet(nn.Module):
|
|
|
|
"""
|
|
|
|
Architecture based on U-Net: Convolutional Networks for Biomedical Image Segmentation
|
|
|
|
Link - https://arxiv.org/abs/1505.04597
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
num_classes (int): Number of output classes required (default 19 for KITTI dataset)
|
|
|
|
bilinear (bool): Whether to use bilinear interpolation or transposed
|
|
|
|
convolutions for upsampling.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, num_classes=19, bilinear=False):
|
|
|
|
super().__init__()
|
|
|
|
self.layer1 = DoubleConv(3, 64)
|
|
|
|
self.layer2 = Down(64, 128)
|
|
|
|
self.layer3 = Down(128, 256)
|
|
|
|
self.layer4 = Down(256, 512)
|
|
|
|
self.layer5 = Down(512, 1024)
|
|
|
|
|
|
|
|
self.layer6 = Up(1024, 512, bilinear=bilinear)
|
|
|
|
self.layer7 = Up(512, 256, bilinear=bilinear)
|
|
|
|
self.layer8 = Up(256, 128, bilinear=bilinear)
|
|
|
|
self.layer9 = Up(128, 64, bilinear=bilinear)
|
|
|
|
|
|
|
|
self.layer10 = nn.Conv2d(64, num_classes, kernel_size=1)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x1 = self.layer1(x)
|
|
|
|
x2 = self.layer2(x1)
|
|
|
|
x3 = self.layer3(x2)
|
|
|
|
x4 = self.layer4(x3)
|
|
|
|
x5 = self.layer5(x4)
|
|
|
|
|
|
|
|
x6 = self.layer6(x5, x4)
|
|
|
|
x6 = self.layer7(x6, x3)
|
|
|
|
x6 = self.layer8(x6, x2)
|
|
|
|
x6 = self.layer9(x6, x1)
|
|
|
|
|
|
|
|
return self.layer10(x6)
|
|
|
|
|
|
|
|
|
2020-02-17 13:03:41 +00:00
|
|
|
class DoubleConv(nn.Module):
|
2020-04-03 19:01:40 +00:00
|
|
|
"""
|
2020-02-17 13:03:41 +00:00
|
|
|
Double Convolution and BN and ReLU
|
|
|
|
(3x3 conv -> BN -> ReLU) ** 2
|
2020-04-03 19:01:40 +00:00
|
|
|
"""
|
2020-03-24 18:55:27 +00:00
|
|
|
|
2020-02-17 13:03:41 +00:00
|
|
|
def __init__(self, in_ch, out_ch):
|
|
|
|
super().__init__()
|
|
|
|
self.net = nn.Sequential(
|
|
|
|
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
|
|
|
|
nn.BatchNorm2d(out_ch),
|
|
|
|
nn.ReLU(inplace=True),
|
|
|
|
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
|
|
|
|
nn.BatchNorm2d(out_ch),
|
|
|
|
nn.ReLU(inplace=True)
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.net(x)
|
|
|
|
|
|
|
|
|
|
|
|
class Down(nn.Module):
|
2020-04-03 19:01:40 +00:00
|
|
|
"""
|
2020-02-17 13:03:41 +00:00
|
|
|
Combination of MaxPool2d and DoubleConv in series
|
2020-04-03 19:01:40 +00:00
|
|
|
"""
|
2020-03-24 18:55:27 +00:00
|
|
|
|
2020-02-17 13:03:41 +00:00
|
|
|
def __init__(self, in_ch, out_ch):
|
|
|
|
super().__init__()
|
|
|
|
self.net = nn.Sequential(
|
|
|
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
|
|
|
DoubleConv(in_ch, out_ch)
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.net(x)
|
|
|
|
|
|
|
|
|
|
|
|
class Up(nn.Module):
|
2020-04-03 19:01:40 +00:00
|
|
|
"""
|
2020-02-17 13:03:41 +00:00
|
|
|
Upsampling (by either bilinear interpolation or transpose convolutions)
|
|
|
|
followed by concatenation of feature map from contracting path,
|
|
|
|
followed by double 3x3 convolution.
|
2020-04-03 19:01:40 +00:00
|
|
|
"""
|
2020-03-24 18:55:27 +00:00
|
|
|
|
2020-02-17 13:03:41 +00:00
|
|
|
def __init__(self, in_ch, out_ch, bilinear=False):
|
|
|
|
super().__init__()
|
|
|
|
self.upsample = None
|
|
|
|
if bilinear:
|
|
|
|
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
|
|
|
else:
|
|
|
|
self.upsample = nn.ConvTranspose2d(in_ch, in_ch // 2, kernel_size=2, stride=2)
|
|
|
|
|
|
|
|
self.conv = DoubleConv(in_ch, out_ch)
|
|
|
|
|
|
|
|
def forward(self, x1, x2):
|
|
|
|
x1 = self.upsample(x1)
|
|
|
|
|
|
|
|
# Pad x1 to the size of x2
|
|
|
|
diff_h = x2.shape[2] - x1.shape[2]
|
|
|
|
diff_w = x2.shape[3] - x1.shape[3]
|
|
|
|
|
|
|
|
x1 = F.pad(x1, [diff_w // 2, diff_w - diff_w // 2, diff_h // 2, diff_h - diff_h // 2])
|
|
|
|
|
|
|
|
# Concatenate along the channels axis
|
|
|
|
x = torch.cat([x2, x1], dim=1)
|
|
|
|
return self.conv(x)
|