import torch import torch.nn as nn import torch.nn.functional as F class UNet(nn.Module): """ Architecture based on U-Net: Convolutional Networks for Biomedical Image Segmentation Link - https://arxiv.org/abs/1505.04597 Parameters: num_classes (int): Number of output classes required (default 19 for KITTI dataset) bilinear (bool): Whether to use bilinear interpolation or transposed convolutions for upsampling. """ def __init__(self, num_classes=19, bilinear=False): super().__init__() self.layer1 = DoubleConv(3, 64) self.layer2 = Down(64, 128) self.layer3 = Down(128, 256) self.layer4 = Down(256, 512) self.layer5 = Down(512, 1024) self.layer6 = Up(1024, 512, bilinear=bilinear) self.layer7 = Up(512, 256, bilinear=bilinear) self.layer8 = Up(256, 128, bilinear=bilinear) self.layer9 = Up(128, 64, bilinear=bilinear) self.layer10 = nn.Conv2d(64, num_classes, kernel_size=1) def forward(self, x): x1 = self.layer1(x) x2 = self.layer2(x1) x3 = self.layer3(x2) x4 = self.layer4(x3) x5 = self.layer5(x4) x6 = self.layer6(x5, x4) x6 = self.layer7(x6, x3) x6 = self.layer8(x6, x2) x6 = self.layer9(x6, x1) return self.layer10(x6) class DoubleConv(nn.Module): """ Double Convolution and BN and ReLU (3x3 conv -> BN -> ReLU) ** 2 """ def __init__(self, in_ch, out_ch): super().__init__() self.net = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) def forward(self, x): return self.net(x) class Down(nn.Module): """ Combination of MaxPool2d and DoubleConv in series """ def __init__(self, in_ch, out_ch): super().__init__() self.net = nn.Sequential( nn.MaxPool2d(kernel_size=2, stride=2), DoubleConv(in_ch, out_ch) ) def forward(self, x): return self.net(x) class Up(nn.Module): """ Upsampling (by either bilinear interpolation or transpose convolutions) followed by concatenation of feature map from contracting path, followed by double 3x3 convolution. """ def __init__(self, in_ch, out_ch, bilinear=False): super().__init__() self.upsample = None if bilinear: self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) else: self.upsample = nn.ConvTranspose2d(in_ch, in_ch // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_ch, out_ch) def forward(self, x1, x2): x1 = self.upsample(x1) # Pad x1 to the size of x2 diff_h = x2.shape[2] - x1.shape[2] diff_w = x2.shape[3] - x1.shape[3] x1 = F.pad(x1, [diff_w // 2, diff_w - diff_w // 2, diff_h // 2, diff_h - diff_h // 2]) # Concatenate along the channels axis x = torch.cat([x2, x1], dim=1) return self.conv(x)