2020-02-17 13:03:41 +00:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
class DoubleConv(nn.Module):
|
|
|
|
'''
|
|
|
|
Double Convolution and BN and ReLU
|
|
|
|
(3x3 conv -> BN -> ReLU) ** 2
|
|
|
|
'''
|
2020-03-24 18:55:27 +00:00
|
|
|
|
2020-02-17 13:03:41 +00:00
|
|
|
def __init__(self, in_ch, out_ch):
|
|
|
|
super().__init__()
|
|
|
|
self.net = nn.Sequential(
|
|
|
|
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
|
|
|
|
nn.BatchNorm2d(out_ch),
|
|
|
|
nn.ReLU(inplace=True),
|
|
|
|
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
|
|
|
|
nn.BatchNorm2d(out_ch),
|
|
|
|
nn.ReLU(inplace=True)
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.net(x)
|
|
|
|
|
|
|
|
|
|
|
|
class Down(nn.Module):
|
|
|
|
'''
|
|
|
|
Combination of MaxPool2d and DoubleConv in series
|
|
|
|
'''
|
2020-03-24 18:55:27 +00:00
|
|
|
|
2020-02-17 13:03:41 +00:00
|
|
|
def __init__(self, in_ch, out_ch):
|
|
|
|
super().__init__()
|
|
|
|
self.net = nn.Sequential(
|
|
|
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
|
|
|
DoubleConv(in_ch, out_ch)
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.net(x)
|
|
|
|
|
|
|
|
|
|
|
|
class Up(nn.Module):
|
|
|
|
'''
|
|
|
|
Upsampling (by either bilinear interpolation or transpose convolutions)
|
|
|
|
followed by concatenation of feature map from contracting path,
|
|
|
|
followed by double 3x3 convolution.
|
|
|
|
'''
|
2020-03-24 18:55:27 +00:00
|
|
|
|
2020-02-17 13:03:41 +00:00
|
|
|
def __init__(self, in_ch, out_ch, bilinear=False):
|
|
|
|
super().__init__()
|
|
|
|
self.upsample = None
|
|
|
|
if bilinear:
|
|
|
|
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
|
|
|
else:
|
|
|
|
self.upsample = nn.ConvTranspose2d(in_ch, in_ch // 2, kernel_size=2, stride=2)
|
|
|
|
|
|
|
|
self.conv = DoubleConv(in_ch, out_ch)
|
|
|
|
|
|
|
|
def forward(self, x1, x2):
|
|
|
|
x1 = self.upsample(x1)
|
|
|
|
|
|
|
|
# Pad x1 to the size of x2
|
|
|
|
diff_h = x2.shape[2] - x1.shape[2]
|
|
|
|
diff_w = x2.shape[3] - x1.shape[3]
|
|
|
|
|
|
|
|
x1 = F.pad(x1, [diff_w // 2, diff_w - diff_w // 2, diff_h // 2, diff_h - diff_h // 2])
|
|
|
|
|
|
|
|
# Concatenate along the channels axis
|
|
|
|
x = torch.cat([x2, x1], dim=1)
|
|
|
|
return self.conv(x)
|