lightning/pl_examples/full_examples/semantic_segmentation/models/unet/parts.py

69 lines
1.9 KiB
Python
Raw Normal View History

import torch
import torch.nn as nn
import torch.nn.functional as F
class DoubleConv(nn.Module):
'''
Double Convolution and BN and ReLU
(3x3 conv -> BN -> ReLU) ** 2
'''
def __init__(self, in_ch, out_ch):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.net(x)
class Down(nn.Module):
'''
Combination of MaxPool2d and DoubleConv in series
'''
def __init__(self, in_ch, out_ch):
super().__init__()
self.net = nn.Sequential(
nn.MaxPool2d(kernel_size=2, stride=2),
DoubleConv(in_ch, out_ch)
)
def forward(self, x):
return self.net(x)
class Up(nn.Module):
'''
Upsampling (by either bilinear interpolation or transpose convolutions)
followed by concatenation of feature map from contracting path,
followed by double 3x3 convolution.
'''
def __init__(self, in_ch, out_ch, bilinear=False):
super().__init__()
self.upsample = None
if bilinear:
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
else:
self.upsample = nn.ConvTranspose2d(in_ch, in_ch // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_ch, out_ch)
def forward(self, x1, x2):
x1 = self.upsample(x1)
# Pad x1 to the size of x2
diff_h = x2.shape[2] - x1.shape[2]
diff_w = x2.shape[3] - x1.shape[3]
x1 = F.pad(x1, [diff_w // 2, diff_w - diff_w // 2, diff_h // 2, diff_h - diff_h // 2])
# Concatenate along the channels axis
x = torch.cat([x2, x1], dim=1)
return self.conv(x)