lightning/tests/core/test_lightning_module.py

407 lines
15 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest.mock import Mock
import pytest
import torch
import torch.distributed as dist
from torch import nn
from torch.optim import Adam, SGD
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.helpers import BoringModel
from tests.helpers.runif import RunIf
def test_property_current_epoch():
"""Test that the current_epoch in LightningModule is accessible via the Trainer."""
model = BoringModel()
assert model.current_epoch == 0
trainer = Mock(current_epoch=123)
model.trainer = trainer
assert model.current_epoch == 123
def test_property_global_step():
"""Test that the global_step in LightningModule is accessible via the Trainer."""
model = BoringModel()
assert model.global_step == 0
trainer = Mock(global_step=123)
model.trainer = trainer
assert model.global_step == 123
def test_property_global_rank():
"""Test that the global rank in LightningModule is accessible via the Trainer."""
model = BoringModel()
assert model.global_rank == 0
trainer = Mock(global_rank=123)
model.trainer = trainer
assert model.global_rank == 123
def test_property_local_rank():
"""Test that the local rank in LightningModule is accessible via the Trainer."""
model = BoringModel()
assert model.local_rank == 0
trainer = Mock(local_rank=123)
model.trainer = trainer
assert model.local_rank == 123
def test_property_logger(tmpdir):
"""Test that the logger in LightningModule is accessible via the Trainer."""
model = BoringModel()
assert model.logger is None
logger = TensorBoardLogger(tmpdir)
trainer = Mock(logger=logger)
model.trainer = trainer
assert model.logger == logger
deprecate enable_pl_optimizer as it is not restored properly (#5244) * update * clean test * still in progress * udpdate test * update * update * resolve flake * add test for zero_grad * update * works without accumulated_grad * update * update * resolve amp * revert back to True * update * clean tests * cleaned out * typo * update test * git repare bug * remove print * udpate * Fix formatting/optimizer imports * Refactor the test for cleanliness * Add vanilla model to the test, better var names * Fixed var names, let's clean up these mock tests * repare test * update test * resolve flake8 * add manual_optimization * update tests * resolve flake8 * add random accumulate_grad_batches * improve test * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update * clean tests * correct bug * Apply suggestions from code review * format * adress comments * update on comments * wip * typo * depreceate enable_pl_optimizer * resolve latest bugs * update * resolve merge * add comment * Update pytorch_lightning/core/lightning.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/deprecated_api/test_remove_1-3.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/optimizer_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update restore * add a property * remove setstate as not needed anymore * update test * provide optimizer to on_before_zero_grad * update on comments * update on comments * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * mofidy import * update changelog * resolve flake8 * update * update * clean doc Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-62-109.ec2.internal> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> (cherry picked from commit f2e99d617f05ec65fded81ccc6d0d59807c47573)
2021-01-08 21:13:12 +00:00
def test_params_groups_and_state_are_accessible(tmpdir):
2020-12-21 05:40:55 +00:00
class TestModel(BoringModel):
def training_step(self, batch, batch_idx, optimizer_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
return {"loss": loss}
2020-12-21 05:40:55 +00:00
def configure_optimizers(self):
optimizer = SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = Adam(self.layer.parameters(), lr=0.1)
return [optimizer, optimizer_2]
def optimizer_step(
self,
PoC: Accelerator refactor (#5743) * restoring the result from subprocess * fix queue.get() order for results * add missing "block_backward_sync" context manager * add missing "block_backward_sync" context manager * fix sync_batchnorm * fix supported gpu-ids for tuple * fix clip gradients and inf recursion * accelerator selection: added cluster_environment plugin * fix torchelastic test * fix reduce early stopping decision for DDP * fix tests: callbacks, conversion to lightning optimizer * fix lightning optimizer does not pickle * fix setting benchmark and deterministic option * fix slurm amp test * fix prepare_data test and determine node_rank * fix retrieving last path when testing * remove obsolete plugin argument * fix test: test_trainer_config * fix torchscript tests * fix trainer.model access * move properties * fix test_transfer_batch_hook * fix auto_select_gpus * fix omegaconf test * fix test that needs to simulate slurm ddp * add horovod plugin * fix test with named arguments * clean up whitespace * fix datamodules test * remove old accelerators * fix naming * move old plugins * move to plugins * create precision subpackage * create training_type subpackage * fix all new import errors * fix wrong arguments order passed to test * fix LR finder * Added sharded training type and amp plugin * Move clip grad to precision plugin * Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically * Fix import issue, attempting to fix tests * Fix initial test * Reflect hook logic from master, should wrap model after move to device * Optional state consolidation, since master has optimizers not wrapped * change attribute for instance test * reset optimizers optimizers are not used in main process, so state would be wrong. * legacy * imports in accel * legacy2 * trainer imports * fix import errors after rebase * move hook to new setup location * provide unwrapping logic * fix trainer callback system * added ddp2 implementation * fix imports .legacy * move plugins * restore legacy * drop test.py from root * add tpu accelerator and plugins * fixes * fix lightning optimizer merge * reset bugreportmodel * unwrapping * step routing forward * model access * unwrap * opt * integrate distrib_type * sync changes * sync * fixes * add forgotten generators * add missing logic * update * import * missed imports * import fixes * isort * mv f * changelog * format * move helper to parallel plugin * d * add world size * clean up * duplicate * activate ddp_sharded and tpu * set nvidia flags * remove unused colab var * use_tpu <-> on_tpu attrs * make some ddp_cpu and clusterplugin tests pass * Ref/accelerator connector (#5742) * final cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * connector cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * trainer cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * accelerator cleanup + missing logic in accelerator connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add missing changes to callbacks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * reflect accelerator changes to lightning module Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * clean cluster envs Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * cleanup plugins Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add broadcasting Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * yapf * remove plugin connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * plugins * manual optimization * update optimizer routing * add rank to torchelastic * fix memory mixed precision * setstate on trainer for pickling in ddp spawn * add predict method * add back commented accelerator code * adapt test for sync_batch_norm to new plugin * fix deprecated tests * fix ddp cpu choice when no num_processes are given * yapf format * skip a memory test that cannot pass anymore * fix pickle error in spawn plugin * x * avoid * x * fix cyclic import in docs build * add support for sharded * update typing * add sharded and sharded_spawn to distributed types * make unwrap model default * refactor LightningShardedDataParallel similar to LightningDistributedDataParallel * update sharded spawn to reflect changes * update sharded to reflect changes * Merge 1.1.5 changes * fix merge * fix merge * yapf isort * fix merge * yapf isort * fix indentation in test * copy over reinit scheduler implementation from dev1.2 * fix apex tracking calls with dev_debugger * reduce diff to dev1.2, clean up * fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu * sort plugin tests legacy/new * fix error handling for amp on cpu * fix merge fix merge fix merge * [Feat] Resolve manual_backward (#5837) * resolve manual_backward * resolve flake8 * update * resolve for ddp_spawn * resolve flake8 * resolve flake8 * resolve flake8 Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * fix tests/accelerator tests on cpu * [BugFix] Resolve manual optimization (#5852) * resolve manual_optimization * update * update Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856) * resovle a bug * Accelerator refactor sharded rpc (#5854) * rpc branch * merge * update handling of rpc * make devices etc. Optional in RPC * set devices etc. later if necessary * remove devices from sequential * make devices optional in rpc * fix import * uncomment everything * fix cluster selection Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * resolve bug * fix assert in rpc test * resolve a test * fix docs compilation * accelerator refactor - fix for sharded parity test (#5866) * fix memory issue with ddp_spawn * x x x x x x x x x * x * Remove DDP2 as this does not apply * Add missing pre optimizer hook to ensure lambda closure is called * fix apex docstring * [accelerator][BugFix] Resolve some test for 1 gpu (#5863) * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * update * resolve flake8 * update * update * update * update * update * all_gather * update * make plugins work, add misconfig for RPC * update * update * remove breaking test * resolve some tests * resolve flake8 * revert to ddp_spawn Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de> * yapf isort * resolve flake8 * fix apex doctests * fix apex doctests 2 * resolve docs * update drone * clean env * update * update * update * update * merge * Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881) * Fix RPC related tests, clean out old API, update for new accelerator API * Move tests out of legacy folder, update paths and names * Update test_remove_1-4.py * Expose properties for tpu cores/gpus/num_gpus * Add root GPU property * Move properties to properties.py * move tests that were previously in drone * Fix root GPU property (#5908) * Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator * Add missing tests back * fix best model path transfer when no checkpoint callback available * Fix setup hook order [wip] (#5858) * Call trainer setup hook before accelerator setup * Add test case * add new test * typo * fix callback order in test Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * rename ddp sequential -> rpc sequential for special test * revert * fix stupid merge problem * Use property in connector for sampler (#5913) * merge the import conflicts * fix spawning of processes in slurm * [wip] Fix some bugs for TPU [skip ci] (#5878) * fixed for single tpu * fixed spawn * fixed spawn * update * update * wip * resolve bugs * resolve bug * update on comment * removed decorator * resolve comments * set to 4 * update * update * need cleaning * update * update * update * resolve flake8 * resolve bugs * exclude broadcast * resolve bugs * change test * update * update * skip if meet fails * properly raise trace * update * add catch * wrap test * resolve typo * update * typo Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> * resolve some tests * update * fix imports * update * resolve flake8 * update azure pipeline * skip a sharded test on cpu that requires a gpu * resolve tpus * resolve bug * resolve flake8 * update * updat utils * revert permission change on files * suggestions from carlos Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting changes * remove incomplete comment * Update pytorch_lightning/accelerators/__init__.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting change * add types * warn 1.7 ddp manual backward only if ddp kwarg unset * yapf + isort * pep8 unused imports * fix cyclic import in docs * Apply suggestions from code review * typer in accelerator.py * typo * Apply suggestions from code review * formatting * update on comments * update typo * Update pytorch_lightning/trainer/properties.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * update * suggestion from code review * suggestion from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
epoch,
batch_idx,
optimizer,
optimizer_idx,
PoC: Accelerator refactor (#5743) * restoring the result from subprocess * fix queue.get() order for results * add missing "block_backward_sync" context manager * add missing "block_backward_sync" context manager * fix sync_batchnorm * fix supported gpu-ids for tuple * fix clip gradients and inf recursion * accelerator selection: added cluster_environment plugin * fix torchelastic test * fix reduce early stopping decision for DDP * fix tests: callbacks, conversion to lightning optimizer * fix lightning optimizer does not pickle * fix setting benchmark and deterministic option * fix slurm amp test * fix prepare_data test and determine node_rank * fix retrieving last path when testing * remove obsolete plugin argument * fix test: test_trainer_config * fix torchscript tests * fix trainer.model access * move properties * fix test_transfer_batch_hook * fix auto_select_gpus * fix omegaconf test * fix test that needs to simulate slurm ddp * add horovod plugin * fix test with named arguments * clean up whitespace * fix datamodules test * remove old accelerators * fix naming * move old plugins * move to plugins * create precision subpackage * create training_type subpackage * fix all new import errors * fix wrong arguments order passed to test * fix LR finder * Added sharded training type and amp plugin * Move clip grad to precision plugin * Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically * Fix import issue, attempting to fix tests * Fix initial test * Reflect hook logic from master, should wrap model after move to device * Optional state consolidation, since master has optimizers not wrapped * change attribute for instance test * reset optimizers optimizers are not used in main process, so state would be wrong. * legacy * imports in accel * legacy2 * trainer imports * fix import errors after rebase * move hook to new setup location * provide unwrapping logic * fix trainer callback system * added ddp2 implementation * fix imports .legacy * move plugins * restore legacy * drop test.py from root * add tpu accelerator and plugins * fixes * fix lightning optimizer merge * reset bugreportmodel * unwrapping * step routing forward * model access * unwrap * opt * integrate distrib_type * sync changes * sync * fixes * add forgotten generators * add missing logic * update * import * missed imports * import fixes * isort * mv f * changelog * format * move helper to parallel plugin * d * add world size * clean up * duplicate * activate ddp_sharded and tpu * set nvidia flags * remove unused colab var * use_tpu <-> on_tpu attrs * make some ddp_cpu and clusterplugin tests pass * Ref/accelerator connector (#5742) * final cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * connector cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * trainer cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * accelerator cleanup + missing logic in accelerator connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add missing changes to callbacks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * reflect accelerator changes to lightning module Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * clean cluster envs Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * cleanup plugins Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add broadcasting Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * yapf * remove plugin connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * plugins * manual optimization * update optimizer routing * add rank to torchelastic * fix memory mixed precision * setstate on trainer for pickling in ddp spawn * add predict method * add back commented accelerator code * adapt test for sync_batch_norm to new plugin * fix deprecated tests * fix ddp cpu choice when no num_processes are given * yapf format * skip a memory test that cannot pass anymore * fix pickle error in spawn plugin * x * avoid * x * fix cyclic import in docs build * add support for sharded * update typing * add sharded and sharded_spawn to distributed types * make unwrap model default * refactor LightningShardedDataParallel similar to LightningDistributedDataParallel * update sharded spawn to reflect changes * update sharded to reflect changes * Merge 1.1.5 changes * fix merge * fix merge * yapf isort * fix merge * yapf isort * fix indentation in test * copy over reinit scheduler implementation from dev1.2 * fix apex tracking calls with dev_debugger * reduce diff to dev1.2, clean up * fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu * sort plugin tests legacy/new * fix error handling for amp on cpu * fix merge fix merge fix merge * [Feat] Resolve manual_backward (#5837) * resolve manual_backward * resolve flake8 * update * resolve for ddp_spawn * resolve flake8 * resolve flake8 * resolve flake8 Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * fix tests/accelerator tests on cpu * [BugFix] Resolve manual optimization (#5852) * resolve manual_optimization * update * update Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856) * resovle a bug * Accelerator refactor sharded rpc (#5854) * rpc branch * merge * update handling of rpc * make devices etc. Optional in RPC * set devices etc. later if necessary * remove devices from sequential * make devices optional in rpc * fix import * uncomment everything * fix cluster selection Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * resolve bug * fix assert in rpc test * resolve a test * fix docs compilation * accelerator refactor - fix for sharded parity test (#5866) * fix memory issue with ddp_spawn * x x x x x x x x x * x * Remove DDP2 as this does not apply * Add missing pre optimizer hook to ensure lambda closure is called * fix apex docstring * [accelerator][BugFix] Resolve some test for 1 gpu (#5863) * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * update * resolve flake8 * update * update * update * update * update * all_gather * update * make plugins work, add misconfig for RPC * update * update * remove breaking test * resolve some tests * resolve flake8 * revert to ddp_spawn Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de> * yapf isort * resolve flake8 * fix apex doctests * fix apex doctests 2 * resolve docs * update drone * clean env * update * update * update * update * merge * Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881) * Fix RPC related tests, clean out old API, update for new accelerator API * Move tests out of legacy folder, update paths and names * Update test_remove_1-4.py * Expose properties for tpu cores/gpus/num_gpus * Add root GPU property * Move properties to properties.py * move tests that were previously in drone * Fix root GPU property (#5908) * Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator * Add missing tests back * fix best model path transfer when no checkpoint callback available * Fix setup hook order [wip] (#5858) * Call trainer setup hook before accelerator setup * Add test case * add new test * typo * fix callback order in test Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * rename ddp sequential -> rpc sequential for special test * revert * fix stupid merge problem * Use property in connector for sampler (#5913) * merge the import conflicts * fix spawning of processes in slurm * [wip] Fix some bugs for TPU [skip ci] (#5878) * fixed for single tpu * fixed spawn * fixed spawn * update * update * wip * resolve bugs * resolve bug * update on comment * removed decorator * resolve comments * set to 4 * update * update * need cleaning * update * update * update * resolve flake8 * resolve bugs * exclude broadcast * resolve bugs * change test * update * update * skip if meet fails * properly raise trace * update * add catch * wrap test * resolve typo * update * typo Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> * resolve some tests * update * fix imports * update * resolve flake8 * update azure pipeline * skip a sharded test on cpu that requires a gpu * resolve tpus * resolve bug * resolve flake8 * update * updat utils * revert permission change on files * suggestions from carlos Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting changes * remove incomplete comment * Update pytorch_lightning/accelerators/__init__.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting change * add types * warn 1.7 ddp manual backward only if ddp kwarg unset * yapf + isort * pep8 unused imports * fix cyclic import in docs * Apply suggestions from code review * typer in accelerator.py * typo * Apply suggestions from code review * formatting * update on comments * update typo * Update pytorch_lightning/trainer/properties.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * update * suggestion from code review * suggestion from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
optimizer_closure,
on_tpu=False,
using_native_amp=False,
using_lbfgs=False,
):
2020-12-21 05:40:55 +00:00
# warm up lr
if self.trainer.global_step < 500:
lr_scale = min(1.0, float(self.trainer.global_step + 1) / 500.0)
2020-12-21 05:40:55 +00:00
for pg in optimizer.param_groups:
pg["lr"] = lr_scale * 0.01
PoC: Accelerator refactor (#5743) * restoring the result from subprocess * fix queue.get() order for results * add missing "block_backward_sync" context manager * add missing "block_backward_sync" context manager * fix sync_batchnorm * fix supported gpu-ids for tuple * fix clip gradients and inf recursion * accelerator selection: added cluster_environment plugin * fix torchelastic test * fix reduce early stopping decision for DDP * fix tests: callbacks, conversion to lightning optimizer * fix lightning optimizer does not pickle * fix setting benchmark and deterministic option * fix slurm amp test * fix prepare_data test and determine node_rank * fix retrieving last path when testing * remove obsolete plugin argument * fix test: test_trainer_config * fix torchscript tests * fix trainer.model access * move properties * fix test_transfer_batch_hook * fix auto_select_gpus * fix omegaconf test * fix test that needs to simulate slurm ddp * add horovod plugin * fix test with named arguments * clean up whitespace * fix datamodules test * remove old accelerators * fix naming * move old plugins * move to plugins * create precision subpackage * create training_type subpackage * fix all new import errors * fix wrong arguments order passed to test * fix LR finder * Added sharded training type and amp plugin * Move clip grad to precision plugin * Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically * Fix import issue, attempting to fix tests * Fix initial test * Reflect hook logic from master, should wrap model after move to device * Optional state consolidation, since master has optimizers not wrapped * change attribute for instance test * reset optimizers optimizers are not used in main process, so state would be wrong. * legacy * imports in accel * legacy2 * trainer imports * fix import errors after rebase * move hook to new setup location * provide unwrapping logic * fix trainer callback system * added ddp2 implementation * fix imports .legacy * move plugins * restore legacy * drop test.py from root * add tpu accelerator and plugins * fixes * fix lightning optimizer merge * reset bugreportmodel * unwrapping * step routing forward * model access * unwrap * opt * integrate distrib_type * sync changes * sync * fixes * add forgotten generators * add missing logic * update * import * missed imports * import fixes * isort * mv f * changelog * format * move helper to parallel plugin * d * add world size * clean up * duplicate * activate ddp_sharded and tpu * set nvidia flags * remove unused colab var * use_tpu <-> on_tpu attrs * make some ddp_cpu and clusterplugin tests pass * Ref/accelerator connector (#5742) * final cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * connector cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * trainer cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * accelerator cleanup + missing logic in accelerator connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add missing changes to callbacks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * reflect accelerator changes to lightning module Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * clean cluster envs Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * cleanup plugins Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add broadcasting Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * yapf * remove plugin connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * plugins * manual optimization * update optimizer routing * add rank to torchelastic * fix memory mixed precision * setstate on trainer for pickling in ddp spawn * add predict method * add back commented accelerator code * adapt test for sync_batch_norm to new plugin * fix deprecated tests * fix ddp cpu choice when no num_processes are given * yapf format * skip a memory test that cannot pass anymore * fix pickle error in spawn plugin * x * avoid * x * fix cyclic import in docs build * add support for sharded * update typing * add sharded and sharded_spawn to distributed types * make unwrap model default * refactor LightningShardedDataParallel similar to LightningDistributedDataParallel * update sharded spawn to reflect changes * update sharded to reflect changes * Merge 1.1.5 changes * fix merge * fix merge * yapf isort * fix merge * yapf isort * fix indentation in test * copy over reinit scheduler implementation from dev1.2 * fix apex tracking calls with dev_debugger * reduce diff to dev1.2, clean up * fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu * sort plugin tests legacy/new * fix error handling for amp on cpu * fix merge fix merge fix merge * [Feat] Resolve manual_backward (#5837) * resolve manual_backward * resolve flake8 * update * resolve for ddp_spawn * resolve flake8 * resolve flake8 * resolve flake8 Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * fix tests/accelerator tests on cpu * [BugFix] Resolve manual optimization (#5852) * resolve manual_optimization * update * update Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856) * resovle a bug * Accelerator refactor sharded rpc (#5854) * rpc branch * merge * update handling of rpc * make devices etc. Optional in RPC * set devices etc. later if necessary * remove devices from sequential * make devices optional in rpc * fix import * uncomment everything * fix cluster selection Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * resolve bug * fix assert in rpc test * resolve a test * fix docs compilation * accelerator refactor - fix for sharded parity test (#5866) * fix memory issue with ddp_spawn * x x x x x x x x x * x * Remove DDP2 as this does not apply * Add missing pre optimizer hook to ensure lambda closure is called * fix apex docstring * [accelerator][BugFix] Resolve some test for 1 gpu (#5863) * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * update * resolve flake8 * update * update * update * update * update * all_gather * update * make plugins work, add misconfig for RPC * update * update * remove breaking test * resolve some tests * resolve flake8 * revert to ddp_spawn Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de> * yapf isort * resolve flake8 * fix apex doctests * fix apex doctests 2 * resolve docs * update drone * clean env * update * update * update * update * merge * Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881) * Fix RPC related tests, clean out old API, update for new accelerator API * Move tests out of legacy folder, update paths and names * Update test_remove_1-4.py * Expose properties for tpu cores/gpus/num_gpus * Add root GPU property * Move properties to properties.py * move tests that were previously in drone * Fix root GPU property (#5908) * Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator * Add missing tests back * fix best model path transfer when no checkpoint callback available * Fix setup hook order [wip] (#5858) * Call trainer setup hook before accelerator setup * Add test case * add new test * typo * fix callback order in test Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * rename ddp sequential -> rpc sequential for special test * revert * fix stupid merge problem * Use property in connector for sampler (#5913) * merge the import conflicts * fix spawning of processes in slurm * [wip] Fix some bugs for TPU [skip ci] (#5878) * fixed for single tpu * fixed spawn * fixed spawn * update * update * wip * resolve bugs * resolve bug * update on comment * removed decorator * resolve comments * set to 4 * update * update * need cleaning * update * update * update * resolve flake8 * resolve bugs * exclude broadcast * resolve bugs * change test * update * update * skip if meet fails * properly raise trace * update * add catch * wrap test * resolve typo * update * typo Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> * resolve some tests * update * fix imports * update * resolve flake8 * update azure pipeline * skip a sharded test on cpu that requires a gpu * resolve tpus * resolve bug * resolve flake8 * update * updat utils * revert permission change on files * suggestions from carlos Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting changes * remove incomplete comment * Update pytorch_lightning/accelerators/__init__.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting change * add types * warn 1.7 ddp manual backward only if ddp kwarg unset * yapf + isort * pep8 unused imports * fix cyclic import in docs * Apply suggestions from code review * typer in accelerator.py * typo * Apply suggestions from code review * formatting * update on comments * update typo * Update pytorch_lightning/trainer/properties.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * update * suggestion from code review * suggestion from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
optimizer.step(closure=optimizer_closure)
2020-12-21 05:40:55 +00:00
model = TestModel()
model.training_epoch_end = None
2020-12-21 05:40:55 +00:00
trainer = Trainer(
max_epochs=1, default_root_dir=tmpdir, limit_train_batches=8, limit_val_batches=1, accumulate_grad_batches=1
2020-12-21 05:40:55 +00:00
)
2020-12-21 05:40:55 +00:00
trainer.fit(model)
def test_toggle_untoggle_2_optimizers_no_shared_parameters(tmpdir):
class TestModel(BoringModel):
def training_step(self, batch, batch_idx, optimizer_idx=None):
return super().training_step(batch, batch_idx)
def __init__(self):
super().__init__()
self.layer_1 = nn.Sequential(nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32))
self.layer_2 = nn.Sequential(
nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 2)
)
# set some weights to False to check untoggle works as expected.
self.layer_1[2].weight.requires_grad = False
self.layer_1[4].weight.requires_grad = False
self.layer_2[1].weight.requires_grad = False
self.layer_2[3].weight.requires_grad = False
def configure_optimizers(self):
optimizer = SGD(self.layer_1.parameters(), lr=0.1)
optimizer_2 = Adam(self.layer_2.parameters(), lr=0.1)
return [optimizer, optimizer_2]
def optimizer_step(
self,
current_epoch,
batch_nb,
optimizer,
optimizer_idx,
closure,
on_tpu=False,
using_native_amp=False,
using_lbfgs=False,
):
if optimizer_idx == 0:
assert self.layer_1[0].weight.requires_grad is True
assert self.layer_1[2].weight.requires_grad is False
assert self.layer_1[4].weight.requires_grad is False
assert self.layer_2[1].weight.requires_grad is False
assert self.layer_2[3].weight.requires_grad is False
assert self.layer_2[5].weight.requires_grad is False
if optimizer_idx == 1:
assert self.layer_1[0].weight.requires_grad is False
assert self.layer_1[2].weight.requires_grad is False
assert self.layer_1[4].weight.requires_grad is False
assert self.layer_2[1].weight.requires_grad is False
assert self.layer_2[3].weight.requires_grad is False
assert self.layer_2[5].weight.requires_grad is True
optimizer.step(closure=closure)
model = TestModel()
model.training_epoch_end = None
trainer = Trainer(
max_epochs=1, default_root_dir=tmpdir, limit_train_batches=8, accumulate_grad_batches=2, limit_val_batches=0
)
trainer.fit(model)
def test_toggle_untoggle_3_optimizers_shared_parameters(tmpdir):
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.layer_1 = nn.Sequential(nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32))
self.layer_2 = nn.Sequential(
nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 2)
)
self.layer_3 = nn.Sequential(
nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 2)
)
# set some weights to False to check untoggle works as expected.
self.layer_1[2].weight.requires_grad = False
self.layer_1[4].weight.requires_grad = False
self.layer_2[1].weight.requires_grad = False
self.layer_2[3].weight.requires_grad = False
self.layer_3[1].weight.requires_grad = False
self.layer_3[5].weight.requires_grad = False
def optimizer_step(
self,
current_epoch,
batch_nb,
optimizer,
optimizer_idx,
closure,
on_tpu=False,
using_native_amp=False,
using_lbfgs=False,
):
if optimizer_idx == 0:
assert self.layer_1[0].weight.requires_grad is True
assert self.layer_1[2].weight.requires_grad is False
assert self.layer_1[4].weight.requires_grad is False
assert self.layer_2[1].weight.requires_grad is False
assert self.layer_2[3].weight.requires_grad is False
assert self.layer_2[5].weight.requires_grad is True
assert self.layer_3[1].weight.requires_grad is False
assert self.layer_3[3].weight.requires_grad is False
assert self.layer_3[5].weight.requires_grad is False
if optimizer_idx == 1:
assert self.layer_1[0].weight.requires_grad is False
assert self.layer_1[2].weight.requires_grad is False
assert self.layer_1[4].weight.requires_grad is False
assert self.layer_2[1].weight.requires_grad is False
assert self.layer_2[3].weight.requires_grad is False
assert self.layer_2[5].weight.requires_grad is True
assert self.layer_3[1].weight.requires_grad is False
assert self.layer_3[3].weight.requires_grad is True
assert self.layer_3[5].weight.requires_grad is False
if optimizer_idx == 2:
assert self.layer_1[0].weight.requires_grad is True
assert self.layer_1[2].weight.requires_grad is False
assert self.layer_1[4].weight.requires_grad is False
assert self.layer_2[1].weight.requires_grad is False
assert self.layer_2[3].weight.requires_grad is False
assert self.layer_2[5].weight.requires_grad is False
assert self.layer_3[1].weight.requires_grad is False
assert self.layer_3[3].weight.requires_grad is True
assert self.layer_3[5].weight.requires_grad is False
optimizer.step(closure=closure)
def training_step(self, batch, batch_idx, optimizer_idx=None):
loss = super().training_step(batch, batch_idx)
# make sure the model is untoggle when returning None
return loss if batch_idx % 2 == 0 else None
@staticmethod
def combine_generators(gen_1, gen_2):
yield from gen_1
yield from gen_2
def configure_optimizers(self):
optimizer_1 = SGD(self.combine_generators(self.layer_1.parameters(), self.layer_2.parameters()), lr=0.1)
optimizer_2 = Adam(self.combine_generators(self.layer_2.parameters(), self.layer_3.parameters()), lr=0.1)
optimizer_3 = SGD(self.combine_generators(self.layer_3.parameters(), self.layer_1.parameters()), lr=0.1)
return [optimizer_1, optimizer_2, optimizer_3]
model = TestModel()
model.training_epoch_end = None
trainer = Trainer(max_epochs=1, default_root_dir=tmpdir, limit_train_batches=8, accumulate_grad_batches=2)
trainer.fit(model)
@RunIf(min_gpus=1)
def test_device_placement(tmpdir):
model = BoringModel()
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, gpus=1)
trainer.fit(model)
def assert_device(device: torch.device) -> None:
assert model.device == device
for p in model.parameters():
assert p.device == device
assert_device(torch.device("cpu"))
model.to(torch.device("cuda:0"))
assert_device(torch.device("cuda:0"))
trainer.test(model)
assert_device(torch.device("cpu"))
trainer.predict(model, dataloaders=model.train_dataloader())
assert_device(torch.device("cpu"))
class BoringModelWithShardedTensor(BoringModel):
def __init__(self, spec):
super().__init__()
self.sharded_tensor = dist._sharded_tensor.empty(spec, 10, 20)
self.sharded_tensor.local_shards()[0].tensor.fill_(0)
@RunIf(min_torch="1.10", skip_windows=True)
def test_sharded_tensor_state_dict(tmpdir, single_process_pg):
spec = dist._sharding_spec.ChunkShardingSpec(
dim=0,
placements=[
"rank:0/cpu",
],
)
m_0 = BoringModelWithShardedTensor(spec)
m_0.sharded_tensor.local_shards()[0].tensor.fill_(1)
assert "sharded_tensor" in m_0.state_dict(), 'Expect "sharded_tensor" to appear in the state dict'
m_1 = BoringModelWithShardedTensor(spec)
assert not torch.allclose(
m_1.sharded_tensor.local_shards()[0].tensor, m_0.sharded_tensor.local_shards()[0].tensor
), "Expect the shards to be different before `m_1` loading `m_0`'s state dict"
m_1.load_state_dict(m_0.state_dict(), strict=False)
assert torch.allclose(
m_1.sharded_tensor.local_shards()[0].tensor, m_0.sharded_tensor.local_shards()[0].tensor
), "Expect the shards to be same after `m_1` loading `m_0`'s state dict"
def test_lightning_module_configure_gradient_clipping(tmpdir):
"""Test custom gradient clipping inside `configure_gradient_clipping` hook."""
class TestModel(BoringModel):
has_validated_gradients = False
custom_gradient_clip_val = 1e-2
def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm):
assert gradient_clip_val == self.trainer.gradient_clip_val
assert gradient_clip_algorithm == self.trainer.gradient_clip_algorithm
for pg in optimizer.param_groups:
for p in pg["params"]:
p.grad.clamp_(min=0, max=self.custom_gradient_clip_val)
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir, max_epochs=1, limit_train_batches=1, limit_val_batches=0, gradient_clip_val=1e-4
)
trainer.fit(model)
optimizer = model.optimizers()
for pg in optimizer.param_groups:
for p in pg["params"]:
if p.grad is not None:
assert p.grad.min() >= 0
assert p.grad.max() <= model.custom_gradient_clip_val
def test_lightning_module_configure_gradient_clipping_different_argument_values(tmpdir):
"""Test that setting gradient clipping arguments in `Trainer` and cusotmizing gradient clipping inside
`configure_gradient_clipping` with different values raises an exception."""
class TestModel(BoringModel):
custom_gradient_clip_val = 1e-2
def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm):
self.clip_gradients(optimizer, gradient_clip_val=self.custom_gradient_clip_val)
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir, max_epochs=1, limit_train_batches=2, limit_val_batches=0, gradient_clip_val=1e-4
)
with pytest.raises(
MisconfigurationException,
match=r"gradient_clip_val=0.0001\)` and have passed `clip_gradients\(gradient_clip_val=0.01",
):
trainer.fit(model)
class TestModel(BoringModel):
custom_gradient_clip_algorithm = "foo"
def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm):
self.clip_gradients(optimizer, gradient_clip_algorithm=self.custom_gradient_clip_algorithm)
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=2,
limit_val_batches=0,
gradient_clip_algorithm="norm",
)
with pytest.raises(
MisconfigurationException,
match=r"gradient_clip_algorithm='norm'\)` and have passed `clip_gradients\(gradient_clip_algorithm='foo'",
):
trainer.fit(model)