2020-12-07 12:55:49 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
2021-03-01 13:36:46 +00:00
|
|
|
from unittest.mock import Mock
|
2020-12-07 12:55:49 +00:00
|
|
|
|
2021-08-23 19:59:38 +00:00
|
|
|
import pytest
|
2021-04-23 14:36:52 +00:00
|
|
|
import torch
|
2021-08-23 19:59:38 +00:00
|
|
|
import torch.distributed as dist
|
2021-02-04 22:50:57 +00:00
|
|
|
from torch import nn
|
2021-01-13 06:48:37 +00:00
|
|
|
from torch.optim import Adam, SGD
|
2020-12-07 12:55:49 +00:00
|
|
|
|
2020-12-21 09:15:04 +00:00
|
|
|
from pytorch_lightning import Trainer
|
2021-02-01 14:28:17 +00:00
|
|
|
from pytorch_lightning.loggers import TensorBoardLogger
|
2021-10-13 14:45:13 +00:00
|
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
2021-02-09 10:10:52 +00:00
|
|
|
from tests.helpers import BoringModel
|
2021-04-23 14:36:52 +00:00
|
|
|
from tests.helpers.runif import RunIf
|
2020-12-07 12:55:49 +00:00
|
|
|
|
|
|
|
|
2021-02-01 14:28:17 +00:00
|
|
|
def test_property_current_epoch():
|
2021-07-26 11:37:35 +00:00
|
|
|
"""Test that the current_epoch in LightningModule is accessible via the Trainer."""
|
2021-02-01 14:28:17 +00:00
|
|
|
model = BoringModel()
|
|
|
|
assert model.current_epoch == 0
|
|
|
|
|
|
|
|
trainer = Mock(current_epoch=123)
|
|
|
|
model.trainer = trainer
|
|
|
|
assert model.current_epoch == 123
|
|
|
|
|
|
|
|
|
|
|
|
def test_property_global_step():
|
2021-07-26 11:37:35 +00:00
|
|
|
"""Test that the global_step in LightningModule is accessible via the Trainer."""
|
2021-02-01 14:28:17 +00:00
|
|
|
model = BoringModel()
|
|
|
|
assert model.global_step == 0
|
|
|
|
|
|
|
|
trainer = Mock(global_step=123)
|
|
|
|
model.trainer = trainer
|
|
|
|
assert model.global_step == 123
|
|
|
|
|
|
|
|
|
|
|
|
def test_property_global_rank():
|
2021-07-26 11:37:35 +00:00
|
|
|
"""Test that the global rank in LightningModule is accessible via the Trainer."""
|
2021-02-01 14:28:17 +00:00
|
|
|
model = BoringModel()
|
|
|
|
assert model.global_rank == 0
|
|
|
|
|
|
|
|
trainer = Mock(global_rank=123)
|
|
|
|
model.trainer = trainer
|
|
|
|
assert model.global_rank == 123
|
|
|
|
|
|
|
|
|
|
|
|
def test_property_local_rank():
|
2021-07-26 11:37:35 +00:00
|
|
|
"""Test that the local rank in LightningModule is accessible via the Trainer."""
|
2021-02-01 14:28:17 +00:00
|
|
|
model = BoringModel()
|
|
|
|
assert model.local_rank == 0
|
|
|
|
|
|
|
|
trainer = Mock(local_rank=123)
|
|
|
|
model.trainer = trainer
|
|
|
|
assert model.local_rank == 123
|
|
|
|
|
|
|
|
|
|
|
|
def test_property_logger(tmpdir):
|
2021-07-26 11:37:35 +00:00
|
|
|
"""Test that the logger in LightningModule is accessible via the Trainer."""
|
2021-02-01 14:28:17 +00:00
|
|
|
model = BoringModel()
|
|
|
|
assert model.logger is None
|
|
|
|
|
|
|
|
logger = TensorBoardLogger(tmpdir)
|
|
|
|
trainer = Mock(logger=logger)
|
|
|
|
model.trainer = trainer
|
|
|
|
assert model.logger == logger
|
|
|
|
|
|
|
|
|
2021-01-08 21:13:12 +00:00
|
|
|
def test_params_groups_and_state_are_accessible(tmpdir):
|
2020-12-21 05:40:55 +00:00
|
|
|
class TestModel(BoringModel):
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
|
|
|
output = self.layer(batch)
|
|
|
|
loss = self.loss(batch, output)
|
|
|
|
return {"loss": loss}
|
2020-12-11 19:24:59 +00:00
|
|
|
|
2020-12-21 05:40:55 +00:00
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer = SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
optimizer_2 = Adam(self.layer.parameters(), lr=0.1)
|
|
|
|
return [optimizer, optimizer_2]
|
2020-12-11 19:24:59 +00:00
|
|
|
|
2021-02-06 11:07:26 +00:00
|
|
|
def optimizer_step(
|
|
|
|
self,
|
PoC: Accelerator refactor (#5743)
* restoring the result from subprocess
* fix queue.get() order for results
* add missing "block_backward_sync" context manager
* add missing "block_backward_sync" context manager
* fix sync_batchnorm
* fix supported gpu-ids for tuple
* fix clip gradients and inf recursion
* accelerator selection: added cluster_environment plugin
* fix torchelastic test
* fix reduce early stopping decision for DDP
* fix tests: callbacks, conversion to lightning optimizer
* fix lightning optimizer does not pickle
* fix setting benchmark and deterministic option
* fix slurm amp test
* fix prepare_data test and determine node_rank
* fix retrieving last path when testing
* remove obsolete plugin argument
* fix test: test_trainer_config
* fix torchscript tests
* fix trainer.model access
* move properties
* fix test_transfer_batch_hook
* fix auto_select_gpus
* fix omegaconf test
* fix test that needs to simulate slurm ddp
* add horovod plugin
* fix test with named arguments
* clean up whitespace
* fix datamodules test
* remove old accelerators
* fix naming
* move old plugins
* move to plugins
* create precision subpackage
* create training_type subpackage
* fix all new import errors
* fix wrong arguments order passed to test
* fix LR finder
* Added sharded training type and amp plugin
* Move clip grad to precision plugin
* Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically
* Fix import issue, attempting to fix tests
* Fix initial test
* Reflect hook logic from master, should wrap model after move to device
* Optional state consolidation, since master has optimizers not wrapped
* change attribute for instance test
* reset optimizers
optimizers are not used in main process, so state would be wrong.
* legacy
* imports in accel
* legacy2
* trainer imports
* fix import errors after rebase
* move hook to new setup location
* provide unwrapping logic
* fix trainer callback system
* added ddp2 implementation
* fix imports .legacy
* move plugins
* restore legacy
* drop test.py from root
* add tpu accelerator and plugins
* fixes
* fix lightning optimizer merge
* reset bugreportmodel
* unwrapping
* step routing forward
* model access
* unwrap
* opt
* integrate distrib_type
* sync changes
* sync
* fixes
* add forgotten generators
* add missing logic
* update
* import
* missed imports
* import fixes
* isort
* mv f
* changelog
* format
* move helper to parallel plugin
* d
* add world size
* clean up
* duplicate
* activate ddp_sharded and tpu
* set nvidia flags
* remove unused colab var
* use_tpu <-> on_tpu attrs
* make some ddp_cpu and clusterplugin tests pass
* Ref/accelerator connector (#5742)
* final cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* connector cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* trainer cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* accelerator cleanup + missing logic in accelerator connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add missing changes to callbacks
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* reflect accelerator changes to lightning module
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* clean cluster envs
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* cleanup plugins
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add broadcasting
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* yapf
* remove plugin connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* plugins
* manual optimization
* update optimizer routing
* add rank to torchelastic
* fix memory mixed precision
* setstate on trainer for pickling in ddp spawn
* add predict method
* add back commented accelerator code
* adapt test for sync_batch_norm to new plugin
* fix deprecated tests
* fix ddp cpu choice when no num_processes are given
* yapf format
* skip a memory test that cannot pass anymore
* fix pickle error in spawn plugin
* x
* avoid
* x
* fix cyclic import in docs build
* add support for sharded
* update typing
* add sharded and sharded_spawn to distributed types
* make unwrap model default
* refactor LightningShardedDataParallel similar to LightningDistributedDataParallel
* update sharded spawn to reflect changes
* update sharded to reflect changes
* Merge 1.1.5 changes
* fix merge
* fix merge
* yapf isort
* fix merge
* yapf isort
* fix indentation in test
* copy over reinit scheduler implementation from dev1.2
* fix apex tracking calls with dev_debugger
* reduce diff to dev1.2, clean up
* fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu
* sort plugin tests legacy/new
* fix error handling for amp on cpu
* fix merge
fix merge
fix merge
* [Feat] Resolve manual_backward (#5837)
* resolve manual_backward
* resolve flake8
* update
* resolve for ddp_spawn
* resolve flake8
* resolve flake8
* resolve flake8
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* fix tests/accelerator tests on cpu
* [BugFix] Resolve manual optimization (#5852)
* resolve manual_optimization
* update
* update
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856)
* resovle a bug
* Accelerator refactor sharded rpc (#5854)
* rpc branch
* merge
* update handling of rpc
* make devices etc. Optional in RPC
* set devices etc. later if necessary
* remove devices from sequential
* make devices optional in rpc
* fix import
* uncomment everything
* fix cluster selection
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* resolve bug
* fix assert in rpc test
* resolve a test
* fix docs compilation
* accelerator refactor - fix for sharded parity test (#5866)
* fix memory issue with ddp_spawn
* x
x
x
x
x
x
x
x
x
* x
* Remove DDP2 as this does not apply
* Add missing pre optimizer hook to ensure lambda closure is called
* fix apex docstring
* [accelerator][BugFix] Resolve some test for 1 gpu (#5863)
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* update
* resolve flake8
* update
* update
* update
* update
* update
* all_gather
* update
* make plugins work, add misconfig for RPC
* update
* update
* remove breaking test
* resolve some tests
* resolve flake8
* revert to ddp_spawn
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de>
* yapf isort
* resolve flake8
* fix apex doctests
* fix apex doctests 2
* resolve docs
* update drone
* clean env
* update
* update
* update
* update
* merge
* Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881)
* Fix RPC related tests, clean out old API, update for new accelerator API
* Move tests out of legacy folder, update paths and names
* Update test_remove_1-4.py
* Expose properties for tpu cores/gpus/num_gpus
* Add root GPU property
* Move properties to properties.py
* move tests that were previously in drone
* Fix root GPU property (#5908)
* Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator
* Add missing tests back
* fix best model path transfer when no checkpoint callback available
* Fix setup hook order [wip] (#5858)
* Call trainer setup hook before accelerator setup
* Add test case
* add new test
* typo
* fix callback order in test
Co-authored-by: tchaton <thomas@grid.ai>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* rename ddp sequential -> rpc sequential for special test
* revert
* fix stupid merge problem
* Use property in connector for sampler (#5913)
* merge the import conflicts
* fix spawning of processes in slurm
* [wip] Fix some bugs for TPU [skip ci] (#5878)
* fixed for single tpu
* fixed spawn
* fixed spawn
* update
* update
* wip
* resolve bugs
* resolve bug
* update on comment
* removed decorator
* resolve comments
* set to 4
* update
* update
* need cleaning
* update
* update
* update
* resolve flake8
* resolve bugs
* exclude broadcast
* resolve bugs
* change test
* update
* update
* skip if meet fails
* properly raise trace
* update
* add catch
* wrap test
* resolve typo
* update
* typo
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
* resolve some tests
* update
* fix imports
* update
* resolve flake8
* update azure pipeline
* skip a sharded test on cpu that requires a gpu
* resolve tpus
* resolve bug
* resolve flake8
* update
* updat utils
* revert permission change on files
* suggestions from carlos
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting changes
* remove incomplete comment
* Update pytorch_lightning/accelerators/__init__.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting change
* add types
* warn 1.7 ddp manual backward only if ddp kwarg unset
* yapf + isort
* pep8 unused imports
* fix cyclic import in docs
* Apply suggestions from code review
* typer in accelerator.py
* typo
* Apply suggestions from code review
* formatting
* update on comments
* update typo
* Update pytorch_lightning/trainer/properties.py
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* update
* suggestion from code review
* suggestion from code review
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
Co-authored-by: SeanNaren <sean@grid.ai>
Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
Co-authored-by: chaton <thomas@grid.ai>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
|
|
|
epoch,
|
|
|
|
batch_idx,
|
2021-02-06 11:07:26 +00:00
|
|
|
optimizer,
|
|
|
|
optimizer_idx,
|
PoC: Accelerator refactor (#5743)
* restoring the result from subprocess
* fix queue.get() order for results
* add missing "block_backward_sync" context manager
* add missing "block_backward_sync" context manager
* fix sync_batchnorm
* fix supported gpu-ids for tuple
* fix clip gradients and inf recursion
* accelerator selection: added cluster_environment plugin
* fix torchelastic test
* fix reduce early stopping decision for DDP
* fix tests: callbacks, conversion to lightning optimizer
* fix lightning optimizer does not pickle
* fix setting benchmark and deterministic option
* fix slurm amp test
* fix prepare_data test and determine node_rank
* fix retrieving last path when testing
* remove obsolete plugin argument
* fix test: test_trainer_config
* fix torchscript tests
* fix trainer.model access
* move properties
* fix test_transfer_batch_hook
* fix auto_select_gpus
* fix omegaconf test
* fix test that needs to simulate slurm ddp
* add horovod plugin
* fix test with named arguments
* clean up whitespace
* fix datamodules test
* remove old accelerators
* fix naming
* move old plugins
* move to plugins
* create precision subpackage
* create training_type subpackage
* fix all new import errors
* fix wrong arguments order passed to test
* fix LR finder
* Added sharded training type and amp plugin
* Move clip grad to precision plugin
* Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically
* Fix import issue, attempting to fix tests
* Fix initial test
* Reflect hook logic from master, should wrap model after move to device
* Optional state consolidation, since master has optimizers not wrapped
* change attribute for instance test
* reset optimizers
optimizers are not used in main process, so state would be wrong.
* legacy
* imports in accel
* legacy2
* trainer imports
* fix import errors after rebase
* move hook to new setup location
* provide unwrapping logic
* fix trainer callback system
* added ddp2 implementation
* fix imports .legacy
* move plugins
* restore legacy
* drop test.py from root
* add tpu accelerator and plugins
* fixes
* fix lightning optimizer merge
* reset bugreportmodel
* unwrapping
* step routing forward
* model access
* unwrap
* opt
* integrate distrib_type
* sync changes
* sync
* fixes
* add forgotten generators
* add missing logic
* update
* import
* missed imports
* import fixes
* isort
* mv f
* changelog
* format
* move helper to parallel plugin
* d
* add world size
* clean up
* duplicate
* activate ddp_sharded and tpu
* set nvidia flags
* remove unused colab var
* use_tpu <-> on_tpu attrs
* make some ddp_cpu and clusterplugin tests pass
* Ref/accelerator connector (#5742)
* final cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* connector cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* trainer cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* accelerator cleanup + missing logic in accelerator connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add missing changes to callbacks
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* reflect accelerator changes to lightning module
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* clean cluster envs
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* cleanup plugins
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add broadcasting
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* yapf
* remove plugin connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* plugins
* manual optimization
* update optimizer routing
* add rank to torchelastic
* fix memory mixed precision
* setstate on trainer for pickling in ddp spawn
* add predict method
* add back commented accelerator code
* adapt test for sync_batch_norm to new plugin
* fix deprecated tests
* fix ddp cpu choice when no num_processes are given
* yapf format
* skip a memory test that cannot pass anymore
* fix pickle error in spawn plugin
* x
* avoid
* x
* fix cyclic import in docs build
* add support for sharded
* update typing
* add sharded and sharded_spawn to distributed types
* make unwrap model default
* refactor LightningShardedDataParallel similar to LightningDistributedDataParallel
* update sharded spawn to reflect changes
* update sharded to reflect changes
* Merge 1.1.5 changes
* fix merge
* fix merge
* yapf isort
* fix merge
* yapf isort
* fix indentation in test
* copy over reinit scheduler implementation from dev1.2
* fix apex tracking calls with dev_debugger
* reduce diff to dev1.2, clean up
* fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu
* sort plugin tests legacy/new
* fix error handling for amp on cpu
* fix merge
fix merge
fix merge
* [Feat] Resolve manual_backward (#5837)
* resolve manual_backward
* resolve flake8
* update
* resolve for ddp_spawn
* resolve flake8
* resolve flake8
* resolve flake8
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* fix tests/accelerator tests on cpu
* [BugFix] Resolve manual optimization (#5852)
* resolve manual_optimization
* update
* update
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856)
* resovle a bug
* Accelerator refactor sharded rpc (#5854)
* rpc branch
* merge
* update handling of rpc
* make devices etc. Optional in RPC
* set devices etc. later if necessary
* remove devices from sequential
* make devices optional in rpc
* fix import
* uncomment everything
* fix cluster selection
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* resolve bug
* fix assert in rpc test
* resolve a test
* fix docs compilation
* accelerator refactor - fix for sharded parity test (#5866)
* fix memory issue with ddp_spawn
* x
x
x
x
x
x
x
x
x
* x
* Remove DDP2 as this does not apply
* Add missing pre optimizer hook to ensure lambda closure is called
* fix apex docstring
* [accelerator][BugFix] Resolve some test for 1 gpu (#5863)
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* update
* resolve flake8
* update
* update
* update
* update
* update
* all_gather
* update
* make plugins work, add misconfig for RPC
* update
* update
* remove breaking test
* resolve some tests
* resolve flake8
* revert to ddp_spawn
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de>
* yapf isort
* resolve flake8
* fix apex doctests
* fix apex doctests 2
* resolve docs
* update drone
* clean env
* update
* update
* update
* update
* merge
* Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881)
* Fix RPC related tests, clean out old API, update for new accelerator API
* Move tests out of legacy folder, update paths and names
* Update test_remove_1-4.py
* Expose properties for tpu cores/gpus/num_gpus
* Add root GPU property
* Move properties to properties.py
* move tests that were previously in drone
* Fix root GPU property (#5908)
* Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator
* Add missing tests back
* fix best model path transfer when no checkpoint callback available
* Fix setup hook order [wip] (#5858)
* Call trainer setup hook before accelerator setup
* Add test case
* add new test
* typo
* fix callback order in test
Co-authored-by: tchaton <thomas@grid.ai>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* rename ddp sequential -> rpc sequential for special test
* revert
* fix stupid merge problem
* Use property in connector for sampler (#5913)
* merge the import conflicts
* fix spawning of processes in slurm
* [wip] Fix some bugs for TPU [skip ci] (#5878)
* fixed for single tpu
* fixed spawn
* fixed spawn
* update
* update
* wip
* resolve bugs
* resolve bug
* update on comment
* removed decorator
* resolve comments
* set to 4
* update
* update
* need cleaning
* update
* update
* update
* resolve flake8
* resolve bugs
* exclude broadcast
* resolve bugs
* change test
* update
* update
* skip if meet fails
* properly raise trace
* update
* add catch
* wrap test
* resolve typo
* update
* typo
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
* resolve some tests
* update
* fix imports
* update
* resolve flake8
* update azure pipeline
* skip a sharded test on cpu that requires a gpu
* resolve tpus
* resolve bug
* resolve flake8
* update
* updat utils
* revert permission change on files
* suggestions from carlos
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting changes
* remove incomplete comment
* Update pytorch_lightning/accelerators/__init__.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting change
* add types
* warn 1.7 ddp manual backward only if ddp kwarg unset
* yapf + isort
* pep8 unused imports
* fix cyclic import in docs
* Apply suggestions from code review
* typer in accelerator.py
* typo
* Apply suggestions from code review
* formatting
* update on comments
* update typo
* Update pytorch_lightning/trainer/properties.py
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* update
* suggestion from code review
* suggestion from code review
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
Co-authored-by: SeanNaren <sean@grid.ai>
Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
Co-authored-by: chaton <thomas@grid.ai>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
|
|
|
optimizer_closure,
|
2021-02-06 11:07:26 +00:00
|
|
|
on_tpu=False,
|
|
|
|
using_native_amp=False,
|
2021-07-26 11:37:35 +00:00
|
|
|
using_lbfgs=False,
|
2021-02-06 11:07:26 +00:00
|
|
|
):
|
2020-12-21 05:40:55 +00:00
|
|
|
# warm up lr
|
|
|
|
if self.trainer.global_step < 500:
|
2021-07-26 11:37:35 +00:00
|
|
|
lr_scale = min(1.0, float(self.trainer.global_step + 1) / 500.0)
|
2020-12-21 05:40:55 +00:00
|
|
|
for pg in optimizer.param_groups:
|
2021-07-26 11:37:35 +00:00
|
|
|
pg["lr"] = lr_scale * 0.01
|
2020-12-11 19:24:59 +00:00
|
|
|
|
PoC: Accelerator refactor (#5743)
* restoring the result from subprocess
* fix queue.get() order for results
* add missing "block_backward_sync" context manager
* add missing "block_backward_sync" context manager
* fix sync_batchnorm
* fix supported gpu-ids for tuple
* fix clip gradients and inf recursion
* accelerator selection: added cluster_environment plugin
* fix torchelastic test
* fix reduce early stopping decision for DDP
* fix tests: callbacks, conversion to lightning optimizer
* fix lightning optimizer does not pickle
* fix setting benchmark and deterministic option
* fix slurm amp test
* fix prepare_data test and determine node_rank
* fix retrieving last path when testing
* remove obsolete plugin argument
* fix test: test_trainer_config
* fix torchscript tests
* fix trainer.model access
* move properties
* fix test_transfer_batch_hook
* fix auto_select_gpus
* fix omegaconf test
* fix test that needs to simulate slurm ddp
* add horovod plugin
* fix test with named arguments
* clean up whitespace
* fix datamodules test
* remove old accelerators
* fix naming
* move old plugins
* move to plugins
* create precision subpackage
* create training_type subpackage
* fix all new import errors
* fix wrong arguments order passed to test
* fix LR finder
* Added sharded training type and amp plugin
* Move clip grad to precision plugin
* Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically
* Fix import issue, attempting to fix tests
* Fix initial test
* Reflect hook logic from master, should wrap model after move to device
* Optional state consolidation, since master has optimizers not wrapped
* change attribute for instance test
* reset optimizers
optimizers are not used in main process, so state would be wrong.
* legacy
* imports in accel
* legacy2
* trainer imports
* fix import errors after rebase
* move hook to new setup location
* provide unwrapping logic
* fix trainer callback system
* added ddp2 implementation
* fix imports .legacy
* move plugins
* restore legacy
* drop test.py from root
* add tpu accelerator and plugins
* fixes
* fix lightning optimizer merge
* reset bugreportmodel
* unwrapping
* step routing forward
* model access
* unwrap
* opt
* integrate distrib_type
* sync changes
* sync
* fixes
* add forgotten generators
* add missing logic
* update
* import
* missed imports
* import fixes
* isort
* mv f
* changelog
* format
* move helper to parallel plugin
* d
* add world size
* clean up
* duplicate
* activate ddp_sharded and tpu
* set nvidia flags
* remove unused colab var
* use_tpu <-> on_tpu attrs
* make some ddp_cpu and clusterplugin tests pass
* Ref/accelerator connector (#5742)
* final cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* connector cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* trainer cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* accelerator cleanup + missing logic in accelerator connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add missing changes to callbacks
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* reflect accelerator changes to lightning module
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* clean cluster envs
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* cleanup plugins
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add broadcasting
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* yapf
* remove plugin connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* plugins
* manual optimization
* update optimizer routing
* add rank to torchelastic
* fix memory mixed precision
* setstate on trainer for pickling in ddp spawn
* add predict method
* add back commented accelerator code
* adapt test for sync_batch_norm to new plugin
* fix deprecated tests
* fix ddp cpu choice when no num_processes are given
* yapf format
* skip a memory test that cannot pass anymore
* fix pickle error in spawn plugin
* x
* avoid
* x
* fix cyclic import in docs build
* add support for sharded
* update typing
* add sharded and sharded_spawn to distributed types
* make unwrap model default
* refactor LightningShardedDataParallel similar to LightningDistributedDataParallel
* update sharded spawn to reflect changes
* update sharded to reflect changes
* Merge 1.1.5 changes
* fix merge
* fix merge
* yapf isort
* fix merge
* yapf isort
* fix indentation in test
* copy over reinit scheduler implementation from dev1.2
* fix apex tracking calls with dev_debugger
* reduce diff to dev1.2, clean up
* fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu
* sort plugin tests legacy/new
* fix error handling for amp on cpu
* fix merge
fix merge
fix merge
* [Feat] Resolve manual_backward (#5837)
* resolve manual_backward
* resolve flake8
* update
* resolve for ddp_spawn
* resolve flake8
* resolve flake8
* resolve flake8
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* fix tests/accelerator tests on cpu
* [BugFix] Resolve manual optimization (#5852)
* resolve manual_optimization
* update
* update
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856)
* resovle a bug
* Accelerator refactor sharded rpc (#5854)
* rpc branch
* merge
* update handling of rpc
* make devices etc. Optional in RPC
* set devices etc. later if necessary
* remove devices from sequential
* make devices optional in rpc
* fix import
* uncomment everything
* fix cluster selection
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* resolve bug
* fix assert in rpc test
* resolve a test
* fix docs compilation
* accelerator refactor - fix for sharded parity test (#5866)
* fix memory issue with ddp_spawn
* x
x
x
x
x
x
x
x
x
* x
* Remove DDP2 as this does not apply
* Add missing pre optimizer hook to ensure lambda closure is called
* fix apex docstring
* [accelerator][BugFix] Resolve some test for 1 gpu (#5863)
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* update
* resolve flake8
* update
* update
* update
* update
* update
* all_gather
* update
* make plugins work, add misconfig for RPC
* update
* update
* remove breaking test
* resolve some tests
* resolve flake8
* revert to ddp_spawn
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de>
* yapf isort
* resolve flake8
* fix apex doctests
* fix apex doctests 2
* resolve docs
* update drone
* clean env
* update
* update
* update
* update
* merge
* Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881)
* Fix RPC related tests, clean out old API, update for new accelerator API
* Move tests out of legacy folder, update paths and names
* Update test_remove_1-4.py
* Expose properties for tpu cores/gpus/num_gpus
* Add root GPU property
* Move properties to properties.py
* move tests that were previously in drone
* Fix root GPU property (#5908)
* Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator
* Add missing tests back
* fix best model path transfer when no checkpoint callback available
* Fix setup hook order [wip] (#5858)
* Call trainer setup hook before accelerator setup
* Add test case
* add new test
* typo
* fix callback order in test
Co-authored-by: tchaton <thomas@grid.ai>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* rename ddp sequential -> rpc sequential for special test
* revert
* fix stupid merge problem
* Use property in connector for sampler (#5913)
* merge the import conflicts
* fix spawning of processes in slurm
* [wip] Fix some bugs for TPU [skip ci] (#5878)
* fixed for single tpu
* fixed spawn
* fixed spawn
* update
* update
* wip
* resolve bugs
* resolve bug
* update on comment
* removed decorator
* resolve comments
* set to 4
* update
* update
* need cleaning
* update
* update
* update
* resolve flake8
* resolve bugs
* exclude broadcast
* resolve bugs
* change test
* update
* update
* skip if meet fails
* properly raise trace
* update
* add catch
* wrap test
* resolve typo
* update
* typo
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
* resolve some tests
* update
* fix imports
* update
* resolve flake8
* update azure pipeline
* skip a sharded test on cpu that requires a gpu
* resolve tpus
* resolve bug
* resolve flake8
* update
* updat utils
* revert permission change on files
* suggestions from carlos
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting changes
* remove incomplete comment
* Update pytorch_lightning/accelerators/__init__.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting change
* add types
* warn 1.7 ddp manual backward only if ddp kwarg unset
* yapf + isort
* pep8 unused imports
* fix cyclic import in docs
* Apply suggestions from code review
* typer in accelerator.py
* typo
* Apply suggestions from code review
* formatting
* update on comments
* update typo
* Update pytorch_lightning/trainer/properties.py
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* update
* suggestion from code review
* suggestion from code review
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
Co-authored-by: SeanNaren <sean@grid.ai>
Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
Co-authored-by: chaton <thomas@grid.ai>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
|
|
|
optimizer.step(closure=optimizer_closure)
|
2020-12-11 19:24:59 +00:00
|
|
|
|
2020-12-21 05:40:55 +00:00
|
|
|
model = TestModel()
|
|
|
|
model.training_epoch_end = None
|
2020-12-11 19:24:59 +00:00
|
|
|
|
2020-12-21 05:40:55 +00:00
|
|
|
trainer = Trainer(
|
2021-07-26 11:37:35 +00:00
|
|
|
max_epochs=1, default_root_dir=tmpdir, limit_train_batches=8, limit_val_batches=1, accumulate_grad_batches=1
|
2020-12-21 05:40:55 +00:00
|
|
|
)
|
2020-12-11 19:24:59 +00:00
|
|
|
|
2020-12-21 05:40:55 +00:00
|
|
|
trainer.fit(model)
|
2021-02-04 22:50:57 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_toggle_untoggle_2_optimizers_no_shared_parameters(tmpdir):
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
|
|
return super().training_step(batch, batch_idx)
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
2021-07-26 11:37:35 +00:00
|
|
|
self.layer_1 = nn.Sequential(nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32))
|
2021-02-04 22:50:57 +00:00
|
|
|
|
|
|
|
self.layer_2 = nn.Sequential(
|
2021-07-26 11:37:35 +00:00
|
|
|
nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 2)
|
2021-02-04 22:50:57 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
# set some weights to False to check untoggle works as expected.
|
|
|
|
self.layer_1[2].weight.requires_grad = False
|
|
|
|
self.layer_1[4].weight.requires_grad = False
|
|
|
|
|
|
|
|
self.layer_2[1].weight.requires_grad = False
|
|
|
|
self.layer_2[3].weight.requires_grad = False
|
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer = SGD(self.layer_1.parameters(), lr=0.1)
|
|
|
|
optimizer_2 = Adam(self.layer_2.parameters(), lr=0.1)
|
|
|
|
return [optimizer, optimizer_2]
|
|
|
|
|
|
|
|
def optimizer_step(
|
|
|
|
self,
|
|
|
|
current_epoch,
|
|
|
|
batch_nb,
|
|
|
|
optimizer,
|
|
|
|
optimizer_idx,
|
|
|
|
closure,
|
|
|
|
on_tpu=False,
|
|
|
|
using_native_amp=False,
|
2021-07-26 11:37:35 +00:00
|
|
|
using_lbfgs=False,
|
2021-02-04 22:50:57 +00:00
|
|
|
):
|
|
|
|
if optimizer_idx == 0:
|
|
|
|
assert self.layer_1[0].weight.requires_grad is True
|
|
|
|
assert self.layer_1[2].weight.requires_grad is False
|
|
|
|
assert self.layer_1[4].weight.requires_grad is False
|
|
|
|
|
|
|
|
assert self.layer_2[1].weight.requires_grad is False
|
|
|
|
assert self.layer_2[3].weight.requires_grad is False
|
|
|
|
assert self.layer_2[5].weight.requires_grad is False
|
|
|
|
|
|
|
|
if optimizer_idx == 1:
|
|
|
|
assert self.layer_1[0].weight.requires_grad is False
|
|
|
|
assert self.layer_1[2].weight.requires_grad is False
|
|
|
|
assert self.layer_1[4].weight.requires_grad is False
|
|
|
|
|
|
|
|
assert self.layer_2[1].weight.requires_grad is False
|
|
|
|
assert self.layer_2[3].weight.requires_grad is False
|
|
|
|
assert self.layer_2[5].weight.requires_grad is True
|
|
|
|
|
|
|
|
optimizer.step(closure=closure)
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
model.training_epoch_end = None
|
|
|
|
|
|
|
|
trainer = Trainer(
|
2021-07-26 11:37:35 +00:00
|
|
|
max_epochs=1, default_root_dir=tmpdir, limit_train_batches=8, accumulate_grad_batches=2, limit_val_batches=0
|
2021-02-04 22:50:57 +00:00
|
|
|
)
|
2021-04-28 18:11:32 +00:00
|
|
|
trainer.fit(model)
|
2021-02-04 22:50:57 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_toggle_untoggle_3_optimizers_shared_parameters(tmpdir):
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
2021-07-26 11:37:35 +00:00
|
|
|
self.layer_1 = nn.Sequential(nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32))
|
2021-02-04 22:50:57 +00:00
|
|
|
|
|
|
|
self.layer_2 = nn.Sequential(
|
2021-07-26 11:37:35 +00:00
|
|
|
nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 2)
|
2021-02-04 22:50:57 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
self.layer_3 = nn.Sequential(
|
2021-07-26 11:37:35 +00:00
|
|
|
nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 2)
|
2021-02-04 22:50:57 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
# set some weights to False to check untoggle works as expected.
|
|
|
|
self.layer_1[2].weight.requires_grad = False
|
|
|
|
self.layer_1[4].weight.requires_grad = False
|
|
|
|
|
|
|
|
self.layer_2[1].weight.requires_grad = False
|
|
|
|
self.layer_2[3].weight.requires_grad = False
|
|
|
|
|
|
|
|
self.layer_3[1].weight.requires_grad = False
|
|
|
|
self.layer_3[5].weight.requires_grad = False
|
|
|
|
|
|
|
|
def optimizer_step(
|
|
|
|
self,
|
|
|
|
current_epoch,
|
|
|
|
batch_nb,
|
|
|
|
optimizer,
|
|
|
|
optimizer_idx,
|
|
|
|
closure,
|
|
|
|
on_tpu=False,
|
|
|
|
using_native_amp=False,
|
2021-07-26 11:37:35 +00:00
|
|
|
using_lbfgs=False,
|
2021-02-04 22:50:57 +00:00
|
|
|
):
|
|
|
|
if optimizer_idx == 0:
|
|
|
|
assert self.layer_1[0].weight.requires_grad is True
|
|
|
|
assert self.layer_1[2].weight.requires_grad is False
|
|
|
|
assert self.layer_1[4].weight.requires_grad is False
|
|
|
|
|
|
|
|
assert self.layer_2[1].weight.requires_grad is False
|
|
|
|
assert self.layer_2[3].weight.requires_grad is False
|
|
|
|
assert self.layer_2[5].weight.requires_grad is True
|
|
|
|
|
|
|
|
assert self.layer_3[1].weight.requires_grad is False
|
|
|
|
assert self.layer_3[3].weight.requires_grad is False
|
|
|
|
assert self.layer_3[5].weight.requires_grad is False
|
|
|
|
|
|
|
|
if optimizer_idx == 1:
|
|
|
|
assert self.layer_1[0].weight.requires_grad is False
|
|
|
|
assert self.layer_1[2].weight.requires_grad is False
|
|
|
|
assert self.layer_1[4].weight.requires_grad is False
|
|
|
|
|
|
|
|
assert self.layer_2[1].weight.requires_grad is False
|
|
|
|
assert self.layer_2[3].weight.requires_grad is False
|
|
|
|
assert self.layer_2[5].weight.requires_grad is True
|
|
|
|
|
|
|
|
assert self.layer_3[1].weight.requires_grad is False
|
|
|
|
assert self.layer_3[3].weight.requires_grad is True
|
|
|
|
assert self.layer_3[5].weight.requires_grad is False
|
|
|
|
|
|
|
|
if optimizer_idx == 2:
|
|
|
|
assert self.layer_1[0].weight.requires_grad is True
|
|
|
|
assert self.layer_1[2].weight.requires_grad is False
|
|
|
|
assert self.layer_1[4].weight.requires_grad is False
|
|
|
|
|
|
|
|
assert self.layer_2[1].weight.requires_grad is False
|
|
|
|
assert self.layer_2[3].weight.requires_grad is False
|
|
|
|
assert self.layer_2[5].weight.requires_grad is False
|
|
|
|
|
|
|
|
assert self.layer_3[1].weight.requires_grad is False
|
|
|
|
assert self.layer_3[3].weight.requires_grad is True
|
|
|
|
assert self.layer_3[5].weight.requires_grad is False
|
|
|
|
|
|
|
|
optimizer.step(closure=closure)
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
2021-02-17 19:55:09 +00:00
|
|
|
loss = super().training_step(batch, batch_idx)
|
|
|
|
# make sure the model is untoggle when returning None
|
|
|
|
return loss if batch_idx % 2 == 0 else None
|
2021-02-04 22:50:57 +00:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def combine_generators(gen_1, gen_2):
|
2021-07-26 12:38:12 +00:00
|
|
|
yield from gen_1
|
|
|
|
yield from gen_2
|
2021-02-04 22:50:57 +00:00
|
|
|
|
|
|
|
def configure_optimizers(self):
|
2021-07-26 11:37:35 +00:00
|
|
|
optimizer_1 = SGD(self.combine_generators(self.layer_1.parameters(), self.layer_2.parameters()), lr=0.1)
|
|
|
|
optimizer_2 = Adam(self.combine_generators(self.layer_2.parameters(), self.layer_3.parameters()), lr=0.1)
|
|
|
|
optimizer_3 = SGD(self.combine_generators(self.layer_3.parameters(), self.layer_1.parameters()), lr=0.1)
|
2021-02-04 22:50:57 +00:00
|
|
|
return [optimizer_1, optimizer_2, optimizer_3]
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
model.training_epoch_end = None
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
trainer = Trainer(max_epochs=1, default_root_dir=tmpdir, limit_train_batches=8, accumulate_grad_batches=2)
|
2021-02-04 22:50:57 +00:00
|
|
|
|
|
|
|
trainer.fit(model)
|
2021-04-23 14:36:52 +00:00
|
|
|
|
|
|
|
|
|
|
|
@RunIf(min_gpus=1)
|
|
|
|
def test_device_placement(tmpdir):
|
|
|
|
|
|
|
|
model = BoringModel()
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, gpus=1)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
def assert_device(device: torch.device) -> None:
|
|
|
|
assert model.device == device
|
|
|
|
for p in model.parameters():
|
|
|
|
assert p.device == device
|
|
|
|
|
|
|
|
assert_device(torch.device("cpu"))
|
|
|
|
model.to(torch.device("cuda:0"))
|
|
|
|
assert_device(torch.device("cuda:0"))
|
|
|
|
trainer.test(model)
|
|
|
|
assert_device(torch.device("cpu"))
|
|
|
|
trainer.predict(model, dataloaders=model.train_dataloader())
|
|
|
|
assert_device(torch.device("cpu"))
|
2021-08-23 19:59:38 +00:00
|
|
|
|
|
|
|
|
|
|
|
class BoringModelWithShardedTensor(BoringModel):
|
|
|
|
def __init__(self, spec):
|
|
|
|
super().__init__()
|
|
|
|
self.sharded_tensor = dist._sharded_tensor.empty(spec, 10, 20)
|
|
|
|
self.sharded_tensor.local_shards()[0].tensor.fill_(0)
|
|
|
|
|
|
|
|
|
2021-10-27 12:38:39 +00:00
|
|
|
@RunIf(min_torch="1.10", skip_windows=True)
|
2021-08-23 19:59:38 +00:00
|
|
|
def test_sharded_tensor_state_dict(tmpdir, single_process_pg):
|
|
|
|
spec = dist._sharding_spec.ChunkShardingSpec(
|
|
|
|
dim=0,
|
|
|
|
placements=[
|
|
|
|
"rank:0/cpu",
|
|
|
|
],
|
|
|
|
)
|
|
|
|
|
|
|
|
m_0 = BoringModelWithShardedTensor(spec)
|
|
|
|
m_0.sharded_tensor.local_shards()[0].tensor.fill_(1)
|
|
|
|
assert "sharded_tensor" in m_0.state_dict(), 'Expect "sharded_tensor" to appear in the state dict'
|
|
|
|
|
|
|
|
m_1 = BoringModelWithShardedTensor(spec)
|
|
|
|
assert not torch.allclose(
|
|
|
|
m_1.sharded_tensor.local_shards()[0].tensor, m_0.sharded_tensor.local_shards()[0].tensor
|
|
|
|
), "Expect the shards to be different before `m_1` loading `m_0`'s state dict"
|
|
|
|
|
|
|
|
m_1.load_state_dict(m_0.state_dict(), strict=False)
|
|
|
|
assert torch.allclose(
|
|
|
|
m_1.sharded_tensor.local_shards()[0].tensor, m_0.sharded_tensor.local_shards()[0].tensor
|
|
|
|
), "Expect the shards to be same after `m_1` loading `m_0`'s state dict"
|
2021-10-13 14:45:13 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_lightning_module_configure_gradient_clipping(tmpdir):
|
|
|
|
"""Test custom gradient clipping inside `configure_gradient_clipping` hook."""
|
|
|
|
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
|
|
|
|
has_validated_gradients = False
|
|
|
|
custom_gradient_clip_val = 1e-2
|
|
|
|
|
|
|
|
def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm):
|
|
|
|
assert gradient_clip_val == self.trainer.gradient_clip_val
|
|
|
|
assert gradient_clip_algorithm == self.trainer.gradient_clip_algorithm
|
|
|
|
|
|
|
|
for pg in optimizer.param_groups:
|
|
|
|
for p in pg["params"]:
|
|
|
|
p.grad[p.grad > self.custom_gradient_clip_val] = self.custom_gradient_clip_val
|
|
|
|
p.grad[p.grad <= 0] = 0
|
|
|
|
|
|
|
|
def on_before_optimizer_step(self, optimizer, optimizer_idx):
|
|
|
|
for pg in optimizer.param_groups:
|
|
|
|
for p in pg["params"]:
|
|
|
|
if p.grad is not None and p.grad.abs().sum() > 0:
|
|
|
|
self.has_validated_gradients = True
|
|
|
|
assert p.grad.min() >= 0
|
|
|
|
assert p.grad.max() <= self.custom_gradient_clip_val
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir, max_epochs=1, limit_train_batches=2, limit_val_batches=0, gradient_clip_val=1e-4
|
|
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
assert model.has_validated_gradients
|
|
|
|
|
|
|
|
|
|
|
|
def test_lightning_module_configure_gradient_clipping_different_argument_values(tmpdir):
|
|
|
|
"""Test that setting gradient clipping arguments in `Trainer` and cusotmizing gradient clipping inside
|
|
|
|
`configure_gradient_clipping` with different values raises an exception."""
|
|
|
|
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
custom_gradient_clip_val = 1e-2
|
|
|
|
|
|
|
|
def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm):
|
|
|
|
self.clip_gradients(optimizer, gradient_clip_val=self.custom_gradient_clip_val)
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir, max_epochs=1, limit_train_batches=2, limit_val_batches=0, gradient_clip_val=1e-4
|
|
|
|
)
|
2021-10-25 16:40:22 +00:00
|
|
|
with pytest.raises(
|
|
|
|
MisconfigurationException,
|
|
|
|
match=r"gradient_clip_val=0.0001\)` and have passed `clip_gradients\(gradient_clip_val=0.01",
|
|
|
|
):
|
2021-10-13 14:45:13 +00:00
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
class TestModel(BoringModel):
|
2021-10-25 16:40:22 +00:00
|
|
|
custom_gradient_clip_algorithm = "foo"
|
2021-10-13 14:45:13 +00:00
|
|
|
|
|
|
|
def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm):
|
|
|
|
self.clip_gradients(optimizer, gradient_clip_algorithm=self.custom_gradient_clip_algorithm)
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
max_epochs=1,
|
|
|
|
limit_train_batches=2,
|
|
|
|
limit_val_batches=0,
|
|
|
|
gradient_clip_algorithm="norm",
|
|
|
|
)
|
|
|
|
with pytest.raises(
|
2021-10-25 16:40:22 +00:00
|
|
|
MisconfigurationException,
|
|
|
|
match=r"gradient_clip_algorithm='norm'\)` and have passed `clip_gradients\(gradient_clip_algorithm='foo'",
|
2021-10-13 14:45:13 +00:00
|
|
|
):
|
|
|
|
trainer.fit(model)
|