lightning/tests/core/test_lightning_module.py

143 lines
4.9 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest.mock import patch
import pytest
from torch.optim import Adam, SGD
from pytorch_lightning import Trainer
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.base import BoringModel
def test_automatic_optimization(tmpdir):
class TestModel(BoringModel):
def optimizer_step(self, *_, **__):
pass
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
accumulate_grad_batches=2,
)
with pytest.raises(
MisconfigurationException,
match='overriding .* optimizer_step .* `accumulate_grad_batches` .* should be 1'
):
trainer.fit(model)
@pytest.mark.parametrize("enable_pl_optimizer", [False, True])
def test_automatic_optimization_num_calls(enable_pl_optimizer, tmpdir):
with patch("torch.optim.SGD.step") as sgd_step, \
patch("torch.optim.SGD.zero_grad") as sgd_zero_grad, \
patch("torch.optim.Adam.step") as adam_step, \
patch("torch.optim.Adam.zero_grad") as adam_zero_grad:
class TestModel(BoringModel):
def training_step(self, batch, batch_idx, optimizer_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
return {"loss": loss}
def configure_optimizers(self):
optimizer = SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = Adam(self.layer.parameters(), lr=0.1)
return [optimizer, optimizer_2]
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx,
optimizer_closure, on_tpu, using_native_amp, using_lbfgs):
assert optimizer_closure.__name__ == "train_step_and_backward_closure"
# update generator opt every 2 steps
if optimizer_idx == 0:
if batch_idx % 2 == 0:
assert isinstance(optimizer, SGD)
optimizer.step(closure=optimizer_closure)
if not enable_pl_optimizer:
optimizer.zero_grad()
# update discriminator opt every 4 steps
if optimizer_idx == 1:
if batch_idx % 4 == 0:
assert isinstance(optimizer, Adam)
optimizer.step(closure=optimizer_closure)
if not enable_pl_optimizer:
optimizer.zero_grad()
model = TestModel()
model.training_epoch_end = None
trainer = Trainer(
max_epochs=1,
default_root_dir=tmpdir,
limit_train_batches=8,
limit_val_batches=1,
accumulate_grad_batches=1,
enable_pl_optimizer=enable_pl_optimizer
)
trainer.fit(model)
assert sgd_step.call_count == 4
assert sgd_zero_grad.call_count == 4
assert adam_step.call_count == 2
assert adam_zero_grad.call_count == 2
@pytest.mark.parametrize("enable_pl_optimizer", [False, True])
def test_params_groups_and_state_are_accessible(enable_pl_optimizer, tmpdir):
2020-12-21 05:40:55 +00:00
class TestModel(BoringModel):
2020-12-21 05:40:55 +00:00
def training_step(self, batch, batch_idx, optimizer_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
return {"loss": loss}
2020-12-21 05:40:55 +00:00
def configure_optimizers(self):
optimizer = SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = Adam(self.layer.parameters(), lr=0.1)
return [optimizer, optimizer_2]
2020-12-21 05:40:55 +00:00
def optimizer_step(self, current_epoch, batch_nb, optimizer, optimizer_idx, closure,
on_tpu=False, using_native_amp=False, using_lbfgs=False):
# warm up lr
if self.trainer.global_step < 500:
lr_scale = min(1., float(self.trainer.global_step + 1) / 500.)
for pg in optimizer.param_groups:
pg['lr'] = lr_scale * 0.01
2020-12-21 05:40:55 +00:00
optimizer.step(closure=closure)
2020-12-21 05:40:55 +00:00
model = TestModel()
model.training_epoch_end = None
2020-12-21 05:40:55 +00:00
trainer = Trainer(
max_epochs=1,
default_root_dir=tmpdir,
limit_train_batches=8,
limit_val_batches=1,
2020-12-21 05:40:55 +00:00
accumulate_grad_batches=1,
enable_pl_optimizer=enable_pl_optimizer
)
2020-12-21 05:40:55 +00:00
trainer.fit(model)