2020-12-07 12:55:49 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
2021-02-01 18:23:53 +00:00
|
|
|
from unittest.mock import Mock, patch
|
2020-12-07 12:55:49 +00:00
|
|
|
|
|
|
|
import pytest
|
2021-02-04 22:50:57 +00:00
|
|
|
from torch import nn
|
2021-01-13 06:48:37 +00:00
|
|
|
from torch.optim import Adam, SGD
|
2020-12-07 12:55:49 +00:00
|
|
|
|
2020-12-21 09:15:04 +00:00
|
|
|
from pytorch_lightning import Trainer
|
2021-02-01 14:28:17 +00:00
|
|
|
from pytorch_lightning.loggers import TensorBoardLogger
|
2020-12-07 12:55:49 +00:00
|
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
from tests.base import BoringModel
|
|
|
|
|
|
|
|
|
2021-02-01 14:28:17 +00:00
|
|
|
def test_property_current_epoch():
|
|
|
|
""" Test that the current_epoch in LightningModule is accessible via the Trainer. """
|
|
|
|
model = BoringModel()
|
|
|
|
assert model.current_epoch == 0
|
|
|
|
|
|
|
|
trainer = Mock(current_epoch=123)
|
|
|
|
model.trainer = trainer
|
|
|
|
assert model.current_epoch == 123
|
|
|
|
|
|
|
|
|
|
|
|
def test_property_global_step():
|
|
|
|
""" Test that the global_step in LightningModule is accessible via the Trainer. """
|
|
|
|
model = BoringModel()
|
|
|
|
assert model.global_step == 0
|
|
|
|
|
|
|
|
trainer = Mock(global_step=123)
|
|
|
|
model.trainer = trainer
|
|
|
|
assert model.global_step == 123
|
|
|
|
|
|
|
|
|
|
|
|
def test_property_global_rank():
|
|
|
|
""" Test that the global rank in LightningModule is accessible via the Trainer. """
|
|
|
|
model = BoringModel()
|
|
|
|
assert model.global_rank == 0
|
|
|
|
|
|
|
|
trainer = Mock(global_rank=123)
|
|
|
|
model.trainer = trainer
|
|
|
|
assert model.global_rank == 123
|
|
|
|
|
|
|
|
|
|
|
|
def test_property_local_rank():
|
|
|
|
""" Test that the local rank in LightningModule is accessible via the Trainer. """
|
|
|
|
model = BoringModel()
|
|
|
|
assert model.local_rank == 0
|
|
|
|
|
|
|
|
trainer = Mock(local_rank=123)
|
|
|
|
model.trainer = trainer
|
|
|
|
assert model.local_rank == 123
|
|
|
|
|
|
|
|
|
|
|
|
def test_property_logger(tmpdir):
|
|
|
|
""" Test that the logger in LightningModule is accessible via the Trainer. """
|
|
|
|
model = BoringModel()
|
|
|
|
assert model.logger is None
|
|
|
|
|
|
|
|
logger = TensorBoardLogger(tmpdir)
|
|
|
|
trainer = Mock(logger=logger)
|
|
|
|
model.trainer = trainer
|
|
|
|
assert model.logger == logger
|
|
|
|
|
|
|
|
|
2020-12-07 12:55:49 +00:00
|
|
|
def test_automatic_optimization(tmpdir):
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def optimizer_step(self, *_, **__):
|
|
|
|
pass
|
|
|
|
|
|
|
|
model = TestModel()
|
2021-01-13 06:48:37 +00:00
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
limit_train_batches=2,
|
|
|
|
limit_val_batches=2,
|
|
|
|
accumulate_grad_batches=2,
|
|
|
|
)
|
2020-12-07 12:55:49 +00:00
|
|
|
|
2021-01-13 06:48:37 +00:00
|
|
|
with pytest.raises(
|
|
|
|
MisconfigurationException,
|
|
|
|
match='overriding .* optimizer_step .* `accumulate_grad_batches` .* should be 1'
|
|
|
|
):
|
2020-12-07 12:55:49 +00:00
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
|
2021-01-08 21:13:12 +00:00
|
|
|
def test_automatic_optimization_num_calls(tmpdir):
|
2020-12-07 12:55:49 +00:00
|
|
|
|
|
|
|
with patch("torch.optim.SGD.step") as sgd_step, \
|
|
|
|
patch("torch.optim.SGD.zero_grad") as sgd_zero_grad, \
|
|
|
|
patch("torch.optim.Adam.step") as adam_step, \
|
|
|
|
patch("torch.optim.Adam.zero_grad") as adam_zero_grad:
|
|
|
|
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
|
2020-12-11 13:51:45 +00:00
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
|
|
|
output = self.layer(batch)
|
|
|
|
loss = self.loss(batch, output)
|
|
|
|
return {"loss": loss}
|
|
|
|
|
2020-12-07 12:55:49 +00:00
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer = SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
optimizer_2 = Adam(self.layer.parameters(), lr=0.1)
|
|
|
|
return [optimizer, optimizer_2]
|
|
|
|
|
|
|
|
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx,
|
|
|
|
optimizer_closure, on_tpu, using_native_amp, using_lbfgs):
|
|
|
|
|
|
|
|
assert optimizer_closure.__name__ == "train_step_and_backward_closure"
|
|
|
|
|
|
|
|
# update generator opt every 2 steps
|
|
|
|
if optimizer_idx == 0:
|
|
|
|
if batch_idx % 2 == 0:
|
|
|
|
assert isinstance(optimizer, SGD)
|
|
|
|
optimizer.step(closure=optimizer_closure)
|
|
|
|
|
|
|
|
# update discriminator opt every 4 steps
|
|
|
|
if optimizer_idx == 1:
|
|
|
|
if batch_idx % 4 == 0:
|
|
|
|
assert isinstance(optimizer, Adam)
|
|
|
|
optimizer.step(closure=optimizer_closure)
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
model.training_epoch_end = None
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
max_epochs=1,
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
limit_train_batches=8,
|
2021-01-13 06:48:37 +00:00
|
|
|
limit_val_batches=1,
|
2020-12-07 12:55:49 +00:00
|
|
|
accumulate_grad_batches=1,
|
|
|
|
)
|
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
assert sgd_step.call_count == 4
|
|
|
|
assert sgd_zero_grad.call_count == 4
|
|
|
|
assert adam_step.call_count == 2
|
|
|
|
assert adam_zero_grad.call_count == 2
|
2020-12-11 19:24:59 +00:00
|
|
|
|
|
|
|
|
2021-01-08 21:13:12 +00:00
|
|
|
def test_params_groups_and_state_are_accessible(tmpdir):
|
2020-12-11 19:24:59 +00:00
|
|
|
|
2020-12-21 05:40:55 +00:00
|
|
|
class TestModel(BoringModel):
|
2020-12-11 19:24:59 +00:00
|
|
|
|
2020-12-21 05:40:55 +00:00
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
|
|
|
output = self.layer(batch)
|
|
|
|
loss = self.loss(batch, output)
|
|
|
|
return {"loss": loss}
|
2020-12-11 19:24:59 +00:00
|
|
|
|
2020-12-21 05:40:55 +00:00
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer = SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
optimizer_2 = Adam(self.layer.parameters(), lr=0.1)
|
|
|
|
return [optimizer, optimizer_2]
|
2020-12-11 19:24:59 +00:00
|
|
|
|
2020-12-21 05:40:55 +00:00
|
|
|
def optimizer_step(self, current_epoch, batch_nb, optimizer, optimizer_idx, closure,
|
|
|
|
on_tpu=False, using_native_amp=False, using_lbfgs=False):
|
|
|
|
# warm up lr
|
|
|
|
if self.trainer.global_step < 500:
|
|
|
|
lr_scale = min(1., float(self.trainer.global_step + 1) / 500.)
|
|
|
|
for pg in optimizer.param_groups:
|
|
|
|
pg['lr'] = lr_scale * 0.01
|
2020-12-11 19:24:59 +00:00
|
|
|
|
2020-12-21 05:40:55 +00:00
|
|
|
optimizer.step(closure=closure)
|
2020-12-11 19:24:59 +00:00
|
|
|
|
2020-12-21 05:40:55 +00:00
|
|
|
model = TestModel()
|
|
|
|
model.training_epoch_end = None
|
2020-12-11 19:24:59 +00:00
|
|
|
|
2020-12-21 05:40:55 +00:00
|
|
|
trainer = Trainer(
|
|
|
|
max_epochs=1,
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
limit_train_batches=8,
|
2021-01-13 06:48:37 +00:00
|
|
|
limit_val_batches=1,
|
2020-12-21 05:40:55 +00:00
|
|
|
accumulate_grad_batches=1,
|
|
|
|
)
|
2020-12-11 19:24:59 +00:00
|
|
|
|
2020-12-21 05:40:55 +00:00
|
|
|
trainer.fit(model)
|
2021-02-04 22:50:57 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_toggle_untoggle_2_optimizers_no_shared_parameters(tmpdir):
|
|
|
|
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
|
|
return super().training_step(batch, batch_idx)
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.layer_1 = nn.Sequential(
|
|
|
|
nn.Linear(32, 32),
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(32, 32),
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(32, 32),
|
|
|
|
)
|
|
|
|
|
|
|
|
self.layer_2 = nn.Sequential(
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(32, 32),
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(32, 32),
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(32, 2)
|
|
|
|
)
|
|
|
|
|
|
|
|
# set some weights to False to check untoggle works as expected.
|
|
|
|
self.layer_1[2].weight.requires_grad = False
|
|
|
|
self.layer_1[4].weight.requires_grad = False
|
|
|
|
|
|
|
|
self.layer_2[1].weight.requires_grad = False
|
|
|
|
self.layer_2[3].weight.requires_grad = False
|
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer = SGD(self.layer_1.parameters(), lr=0.1)
|
|
|
|
optimizer_2 = Adam(self.layer_2.parameters(), lr=0.1)
|
|
|
|
return [optimizer, optimizer_2]
|
|
|
|
|
|
|
|
def optimizer_step(
|
|
|
|
self,
|
|
|
|
current_epoch,
|
|
|
|
batch_nb,
|
|
|
|
optimizer,
|
|
|
|
optimizer_idx,
|
|
|
|
closure,
|
|
|
|
on_tpu=False,
|
|
|
|
using_native_amp=False,
|
|
|
|
using_lbfgs=False
|
|
|
|
):
|
|
|
|
if optimizer_idx == 0:
|
|
|
|
assert self.layer_1[0].weight.requires_grad is True
|
|
|
|
assert self.layer_1[2].weight.requires_grad is False
|
|
|
|
assert self.layer_1[4].weight.requires_grad is False
|
|
|
|
|
|
|
|
assert self.layer_2[1].weight.requires_grad is False
|
|
|
|
assert self.layer_2[3].weight.requires_grad is False
|
|
|
|
assert self.layer_2[5].weight.requires_grad is False
|
|
|
|
|
|
|
|
if optimizer_idx == 1:
|
|
|
|
assert self.layer_1[0].weight.requires_grad is False
|
|
|
|
assert self.layer_1[2].weight.requires_grad is False
|
|
|
|
assert self.layer_1[4].weight.requires_grad is False
|
|
|
|
|
|
|
|
assert self.layer_2[1].weight.requires_grad is False
|
|
|
|
assert self.layer_2[3].weight.requires_grad is False
|
|
|
|
assert self.layer_2[5].weight.requires_grad is True
|
|
|
|
|
|
|
|
optimizer.step(closure=closure)
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
model.training_epoch_end = None
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
max_epochs=1,
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
limit_train_batches=8,
|
|
|
|
accumulate_grad_batches=1,
|
|
|
|
limit_val_batches=0,
|
|
|
|
)
|
|
|
|
|
|
|
|
results = trainer.fit(model)
|
|
|
|
assert results
|
|
|
|
|
|
|
|
|
|
|
|
def test_toggle_untoggle_3_optimizers_shared_parameters(tmpdir):
|
|
|
|
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.layer_1 = nn.Sequential(
|
|
|
|
nn.Linear(32, 32),
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(32, 32),
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(32, 32),
|
|
|
|
)
|
|
|
|
|
|
|
|
self.layer_2 = nn.Sequential(
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(32, 32),
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(32, 32),
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(32, 2)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.layer_3 = nn.Sequential(
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(32, 32),
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(32, 32),
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Linear(32, 2)
|
|
|
|
)
|
|
|
|
|
|
|
|
# set some weights to False to check untoggle works as expected.
|
|
|
|
self.layer_1[2].weight.requires_grad = False
|
|
|
|
self.layer_1[4].weight.requires_grad = False
|
|
|
|
|
|
|
|
self.layer_2[1].weight.requires_grad = False
|
|
|
|
self.layer_2[3].weight.requires_grad = False
|
|
|
|
|
|
|
|
self.layer_3[1].weight.requires_grad = False
|
|
|
|
self.layer_3[5].weight.requires_grad = False
|
|
|
|
|
|
|
|
def optimizer_step(
|
|
|
|
self,
|
|
|
|
current_epoch,
|
|
|
|
batch_nb,
|
|
|
|
optimizer,
|
|
|
|
optimizer_idx,
|
|
|
|
closure,
|
|
|
|
on_tpu=False,
|
|
|
|
using_native_amp=False,
|
|
|
|
using_lbfgs=False
|
|
|
|
):
|
|
|
|
if optimizer_idx == 0:
|
|
|
|
assert self.layer_1[0].weight.requires_grad is True
|
|
|
|
assert self.layer_1[2].weight.requires_grad is False
|
|
|
|
assert self.layer_1[4].weight.requires_grad is False
|
|
|
|
|
|
|
|
assert self.layer_2[1].weight.requires_grad is False
|
|
|
|
assert self.layer_2[3].weight.requires_grad is False
|
|
|
|
assert self.layer_2[5].weight.requires_grad is True
|
|
|
|
|
|
|
|
assert self.layer_3[1].weight.requires_grad is False
|
|
|
|
assert self.layer_3[3].weight.requires_grad is False
|
|
|
|
assert self.layer_3[5].weight.requires_grad is False
|
|
|
|
|
|
|
|
if optimizer_idx == 1:
|
|
|
|
assert self.layer_1[0].weight.requires_grad is False
|
|
|
|
assert self.layer_1[2].weight.requires_grad is False
|
|
|
|
assert self.layer_1[4].weight.requires_grad is False
|
|
|
|
|
|
|
|
assert self.layer_2[1].weight.requires_grad is False
|
|
|
|
assert self.layer_2[3].weight.requires_grad is False
|
|
|
|
assert self.layer_2[5].weight.requires_grad is True
|
|
|
|
|
|
|
|
assert self.layer_3[1].weight.requires_grad is False
|
|
|
|
assert self.layer_3[3].weight.requires_grad is True
|
|
|
|
assert self.layer_3[5].weight.requires_grad is False
|
|
|
|
|
|
|
|
if optimizer_idx == 2:
|
|
|
|
assert self.layer_1[0].weight.requires_grad is True
|
|
|
|
assert self.layer_1[2].weight.requires_grad is False
|
|
|
|
assert self.layer_1[4].weight.requires_grad is False
|
|
|
|
|
|
|
|
assert self.layer_2[1].weight.requires_grad is False
|
|
|
|
assert self.layer_2[3].weight.requires_grad is False
|
|
|
|
assert self.layer_2[5].weight.requires_grad is False
|
|
|
|
|
|
|
|
assert self.layer_3[1].weight.requires_grad is False
|
|
|
|
assert self.layer_3[3].weight.requires_grad is True
|
|
|
|
assert self.layer_3[5].weight.requires_grad is False
|
|
|
|
|
|
|
|
optimizer.step(closure=closure)
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
|
|
return super().training_step(batch, batch_idx)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def combine_generators(gen_1, gen_2):
|
|
|
|
for p in gen_1:
|
|
|
|
yield p
|
|
|
|
for p in gen_2:
|
|
|
|
yield p
|
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer_1 = SGD(
|
|
|
|
self.combine_generators(
|
|
|
|
self.layer_1.parameters(),
|
|
|
|
self.layer_2.parameters()
|
|
|
|
),
|
|
|
|
lr=0.1
|
|
|
|
)
|
|
|
|
optimizer_2 = Adam(
|
|
|
|
self.combine_generators(
|
|
|
|
self.layer_2.parameters(),
|
|
|
|
self.layer_3.parameters()
|
|
|
|
),
|
|
|
|
lr=0.1
|
|
|
|
)
|
|
|
|
optimizer_3 = SGD(
|
|
|
|
self.combine_generators(
|
|
|
|
self.layer_3.parameters(),
|
|
|
|
self.layer_1.parameters()
|
|
|
|
),
|
|
|
|
lr=0.1
|
|
|
|
)
|
|
|
|
return [optimizer_1, optimizer_2, optimizer_3]
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
model.training_epoch_end = None
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
max_epochs=1,
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
limit_train_batches=8,
|
|
|
|
accumulate_grad_batches=1,
|
|
|
|
)
|
|
|
|
|
|
|
|
trainer.fit(model)
|