spaCy/spacy/tests/pipeline/test_morphologizer.py

104 lines
3.3 KiB
Python
Raw Normal View History

import pytest
from spacy import util
from spacy.training import Example
from spacy.lang.en import English
from spacy.language import Language
from spacy.tests.util import make_tempdir
from spacy.morphology import Morphology
def test_label_types():
nlp = Language()
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 11:42:59 +00:00
morphologizer = nlp.add_pipe("morphologizer")
morphologizer.add_label("Feat=A")
with pytest.raises(ValueError):
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 11:42:59 +00:00
morphologizer.add_label(9)
TRAIN_DATA = [
2020-06-20 12:15:04 +00:00
(
"I like green eggs",
{
"morphs": ["Feat=N", "Feat=V", "Feat=J", "Feat=N"],
"pos": ["NOUN", "VERB", "ADJ", "NOUN"],
},
),
# test combinations of morph+POS
("Eat blue ham", {"morphs": ["Feat=V", "", ""], "pos": ["", "ADJ", ""]}),
]
def test_no_label():
nlp = Language()
nlp.add_pipe("morphologizer")
with pytest.raises(ValueError):
2020-09-28 19:35:09 +00:00
nlp.initialize()
def test_implicit_label():
nlp = Language()
nlp.add_pipe("morphologizer")
train_examples = []
for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
2020-09-28 19:35:09 +00:00
nlp.initialize(get_examples=lambda: train_examples)
def test_no_resize():
nlp = Language()
morphologizer = nlp.add_pipe("morphologizer")
morphologizer.add_label("POS" + Morphology.FIELD_SEP + "NOUN")
morphologizer.add_label("POS" + Morphology.FIELD_SEP + "VERB")
2020-09-28 19:35:09 +00:00
nlp.initialize()
# this throws an error because the morphologizer can't be resized after initialization
with pytest.raises(ValueError):
morphologizer.add_label("POS" + Morphology.FIELD_SEP + "ADJ")
2020-09-28 19:35:09 +00:00
def test_initialize_examples():
nlp = Language()
morphologizer = nlp.add_pipe("morphologizer")
morphologizer.add_label("POS" + Morphology.FIELD_SEP + "NOUN")
train_examples = []
for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
# you shouldn't really call this more than once, but for testing it should be fine
2020-09-28 19:35:09 +00:00
nlp.initialize()
nlp.initialize(get_examples=lambda: train_examples)
with pytest.raises(TypeError):
2020-09-28 19:35:09 +00:00
nlp.initialize(get_examples=lambda: None)
with pytest.raises(TypeError):
2020-09-28 19:35:09 +00:00
nlp.initialize(get_examples=train_examples)
def test_overfitting_IO():
# Simple test to try and quickly overfit the morphologizer - ensuring the ML models work correctly
nlp = English()
nlp.add_pipe("morphologizer")
train_examples = []
for inst in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(inst[0]), inst[1]))
2020-09-28 19:35:09 +00:00
optimizer = nlp.initialize(get_examples=lambda: train_examples)
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["morphologizer"] < 0.00001
# test the trained model
test_text = "I like blue ham"
doc = nlp(test_text)
gold_morphs = ["Feat=N", "Feat=V", "", ""]
gold_pos_tags = ["NOUN", "VERB", "ADJ", ""]
assert [str(t.morph) for t in doc] == gold_morphs
assert [t.pos_ for t in doc] == gold_pos_tags
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
assert [str(t.morph) for t in doc2] == gold_morphs
assert [t.pos_ for t in doc2] == gold_pos_tags