Update morphologizer (#5766)

* update `Morphologizer.begin_training` for use with `Example`

* make init and begin_training more consistent

* add `Morphology.normalize_features` to normalize outside of
`Morphology.add`

* make sure `get_loss` doesn't create unknown labels when the POS and
morph alignments differ
This commit is contained in:
Adriane Boyd 2020-07-19 11:10:51 +02:00 committed by GitHub
parent 38b59d728d
commit b81a89f0a9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 91 additions and 40 deletions

View File

@ -58,7 +58,7 @@ cdef class Morphology:
FEATURE_SEP = "|"
FIELD_SEP = "="
VALUE_SEP = ","
EMPTY_MORPH = "_"
EMPTY_MORPH = "_" # not an empty string so that the PreshMap key is not 0
def __init__(self, StringStore strings, tag_map, lemmatizer, exc=None):
self.mem = Pool()
@ -117,13 +117,7 @@ cdef class Morphology:
if not isinstance(features, dict):
warnings.warn(Warnings.W100.format(feature=features))
features = {}
features = _normalize_props(features)
string_features = {self.strings.as_string(field): self.strings.as_string(values) for field, values in features.items()}
# normalized UFEATS string with sorted fields and values
norm_feats_string = self.FEATURE_SEP.join(sorted([
self.FIELD_SEP.join([field, values])
for field, values in string_features.items()
]))
# intified ("Field", "Field=Value") pairs
field_feature_pairs = []
for field in sorted(string_features):
@ -137,6 +131,7 @@ cdef class Morphology:
# the hash key for the tag is either the hash of the normalized UFEATS
# string or the hash of an empty placeholder (using the empty string
# would give a hash key of 0, which is not good for PreshMap)
norm_feats_string = self.normalize_features(features)
if norm_feats_string:
tag.key = self.strings.add(norm_feats_string)
else:
@ -144,6 +139,26 @@ cdef class Morphology:
self.insert(tag)
return tag.key
def normalize_features(self, features):
"""Create a normalized UFEATS string from a features string or dict.
features (Union[dict, str]): Features as dict or UFEATS string.
RETURNS (str): Features as normalized UFEATS string.
"""
if isinstance(features, str):
features = self.feats_to_dict(features)
if not isinstance(features, dict):
warnings.warn(Warnings.W100.format(feature=features))
features = {}
features = _normalize_props(features)
string_features = {self.strings.as_string(field): self.strings.as_string(values) for field, values in features.items()}
# normalized UFEATS string with sorted fields and values
norm_feats_string = self.FEATURE_SEP.join(sorted([
self.FIELD_SEP.join([field, values])
for field, values in string_features.items()
]))
return norm_feats_string or self.EMPTY_MORPH
cdef MorphAnalysisC create_morph_tag(self, field_feature_pairs) except *:
"""Creates a MorphAnalysisC from a list of intified
("Field", "Field=Value") tuples where fields with multiple values have

View File

@ -23,29 +23,45 @@ from .defaults import default_morphologizer
@component("morphologizer", assigns=["token.morph", "token.pos"], default_model=default_morphologizer)
class Morphologizer(Tagger):
POS_FEAT = "POS"
def __init__(self, vocab, model, **cfg):
self.vocab = vocab
self.model = model
self._rehearsal_model = None
self.cfg = dict(sorted(cfg.items()))
self.cfg.setdefault("labels", {})
self.cfg.setdefault("morph_pos", {})
# to be able to set annotations without string operations on labels,
# store mappings from morph+POS labels to token-level annotations:
# 1) labels_morph stores a mapping from morph+POS->morph
self.cfg.setdefault("labels_morph", {})
# 2) labels_pos stores a mapping from morph+POS->POS
self.cfg.setdefault("labels_pos", {})
# add mappings for empty morph
self.cfg["labels_morph"][Morphology.EMPTY_MORPH] = Morphology.EMPTY_MORPH
self.cfg["labels_pos"][Morphology.EMPTY_MORPH] = POS_IDS[""]
@property
def labels(self):
return tuple(self.cfg["labels"].keys())
return tuple(self.cfg["labels_morph"].keys())
def add_label(self, label):
if not isinstance(label, str):
raise ValueError(Errors.E187)
if label in self.labels:
return 0
morph = Morphology.feats_to_dict(label)
norm_morph_pos = self.vocab.strings[self.vocab.morphology.add(morph)]
pos = morph.get("POS", "")
if norm_morph_pos not in self.cfg["labels"]:
self.cfg["labels"][norm_morph_pos] = norm_morph_pos
self.cfg["morph_pos"][norm_morph_pos] = POS_IDS[pos]
# normalize label
norm_label = self.vocab.morphology.normalize_features(label)
# extract separate POS and morph tags
label_dict = Morphology.feats_to_dict(label)
pos = label_dict.get(self.POS_FEAT, "")
if self.POS_FEAT in label_dict:
label_dict.pop(self.POS_FEAT)
# normalize morph string and add to morphology table
norm_morph = self.vocab.strings[self.vocab.morphology.add(label_dict)]
# add label mappings
if norm_label not in self.cfg["labels_morph"]:
self.cfg["labels_morph"][norm_label] = norm_morph
self.cfg["labels_pos"][norm_label] = POS_IDS[pos]
return 1
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None,
@ -53,14 +69,16 @@ class Morphologizer(Tagger):
for example in get_examples():
for i, token in enumerate(example.reference):
pos = token.pos_
morph = token.morph
norm_morph = self.vocab.strings[self.vocab.morphology.add(morph)]
morph = token.morph_
# create and add the combined morph+POS label
morph_dict = Morphology.feats_to_dict(morph)
if pos:
morph["POS"] = pos
norm_morph_pos = self.vocab.strings[self.vocab.morphology.add(morph)]
if norm_morph_pos not in self.cfg["labels"]:
self.cfg["labels"][norm_morph_pos] = norm_morph
self.cfg["morph_pos"][norm_morph_pos] = POS_IDS[pos]
morph_dict[self.POS_FEAT] = pos
norm_label = self.vocab.strings[self.vocab.morphology.add(morph_dict)]
# add label->morph and label->POS mappings
if norm_label not in self.cfg["labels_morph"]:
self.cfg["labels_morph"][norm_label] = morph
self.cfg["labels_pos"][norm_label] = POS_IDS[pos]
self.set_output(len(self.labels))
self.model.initialize()
link_vectors_to_models(self.vocab)
@ -79,8 +97,8 @@ class Morphologizer(Tagger):
doc_tag_ids = doc_tag_ids.get()
for j, tag_id in enumerate(doc_tag_ids):
morph = self.labels[tag_id]
doc.c[j].morph = self.vocab.morphology.add(self.cfg["labels"][morph])
doc.c[j].pos = self.cfg["morph_pos"][morph]
doc.c[j].morph = self.vocab.morphology.add(self.cfg["labels_morph"][morph])
doc.c[j].pos = self.cfg["labels_pos"][morph]
doc.is_morphed = True
@ -94,14 +112,17 @@ class Morphologizer(Tagger):
for i in range(len(morphs)):
pos = pos_tags[i]
morph = morphs[i]
feats = Morphology.feats_to_dict(morph)
# POS may align (same value for multiple tokens) when morph
# doesn't, so if either is None, treat both as None here so that
# truths doesn't end up with an unknown morph+POS combination
if pos is None or morph is None:
pos = None
morph = None
label_dict = Morphology.feats_to_dict(morph)
if pos:
feats["POS"] = pos
if len(feats) > 0:
morph = self.vocab.strings[self.vocab.morphology.add(feats)]
if morph == "":
morph = Morphology.EMPTY_MORPH
eg_truths.append(morph)
label_dict[self.POS_FEAT] = pos
label = self.vocab.strings[self.vocab.morphology.add(label_dict)]
eg_truths.append(label)
truths.append(eg_truths)
d_scores, loss = loss_func(scores, truths)
if self.model.ops.xp.isnan(loss):

View File

@ -5,6 +5,7 @@ from spacy.gold import Example
from spacy.lang.en import English
from spacy.language import Language
from spacy.tests.util import make_tempdir
from spacy.morphology import Morphology
def test_label_types():
@ -23,9 +24,10 @@ TRAIN_DATA = [
"pos": ["NOUN", "VERB", "ADJ", "NOUN"],
},
),
# test combinations of morph+POS
(
"Eat blue ham",
{"morphs": ["Feat=V", "Feat=J", "Feat=N"], "pos": ["VERB", "ADJ", "NOUN"]},
{"morphs": ["Feat=V", "", ""], "pos": ["", "ADJ", ""]},
),
]
@ -38,7 +40,12 @@ def test_overfitting_IO():
for inst in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(inst[0]), inst[1]))
for morph, pos in zip(inst[1]["morphs"], inst[1]["pos"]):
morphologizer.add_label(morph + "|POS=" + pos)
if morph and pos:
morphologizer.add_label(morph + Morphology.FEATURE_SEP + "POS" + Morphology.FIELD_SEP + pos)
elif pos:
morphologizer.add_label("POS" + Morphology.FIELD_SEP + pos)
elif morph:
morphologizer.add_label(morph)
nlp.add_pipe(morphologizer)
optimizer = nlp.begin_training()
@ -48,19 +55,27 @@ def test_overfitting_IO():
assert losses["morphologizer"] < 0.00001
# test the trained model
test_text = "I like blue eggs"
test_text = "I like blue ham"
doc = nlp(test_text)
gold_morphs = [
"Feat=N|POS=NOUN",
"Feat=V|POS=VERB",
"Feat=J|POS=ADJ",
"Feat=N|POS=NOUN",
"Feat=N",
"Feat=V",
"",
"",
]
gold_pos_tags = [
"NOUN",
"VERB",
"ADJ",
"",
]
assert [t.morph_ for t in doc] == gold_morphs
assert [t.pos_ for t in doc] == gold_pos_tags
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
assert gold_morphs == [t.morph_ for t in doc2]
assert [t.morph_ for t in doc2] == gold_morphs
assert [t.pos_ for t in doc2] == gold_pos_tags