mirror of https://github.com/explosion/spaCy.git
Update morphologizer (#5766)
* update `Morphologizer.begin_training` for use with `Example` * make init and begin_training more consistent * add `Morphology.normalize_features` to normalize outside of `Morphology.add` * make sure `get_loss` doesn't create unknown labels when the POS and morph alignments differ
This commit is contained in:
parent
38b59d728d
commit
b81a89f0a9
|
@ -58,7 +58,7 @@ cdef class Morphology:
|
|||
FEATURE_SEP = "|"
|
||||
FIELD_SEP = "="
|
||||
VALUE_SEP = ","
|
||||
EMPTY_MORPH = "_"
|
||||
EMPTY_MORPH = "_" # not an empty string so that the PreshMap key is not 0
|
||||
|
||||
def __init__(self, StringStore strings, tag_map, lemmatizer, exc=None):
|
||||
self.mem = Pool()
|
||||
|
@ -117,13 +117,7 @@ cdef class Morphology:
|
|||
if not isinstance(features, dict):
|
||||
warnings.warn(Warnings.W100.format(feature=features))
|
||||
features = {}
|
||||
features = _normalize_props(features)
|
||||
string_features = {self.strings.as_string(field): self.strings.as_string(values) for field, values in features.items()}
|
||||
# normalized UFEATS string with sorted fields and values
|
||||
norm_feats_string = self.FEATURE_SEP.join(sorted([
|
||||
self.FIELD_SEP.join([field, values])
|
||||
for field, values in string_features.items()
|
||||
]))
|
||||
# intified ("Field", "Field=Value") pairs
|
||||
field_feature_pairs = []
|
||||
for field in sorted(string_features):
|
||||
|
@ -137,6 +131,7 @@ cdef class Morphology:
|
|||
# the hash key for the tag is either the hash of the normalized UFEATS
|
||||
# string or the hash of an empty placeholder (using the empty string
|
||||
# would give a hash key of 0, which is not good for PreshMap)
|
||||
norm_feats_string = self.normalize_features(features)
|
||||
if norm_feats_string:
|
||||
tag.key = self.strings.add(norm_feats_string)
|
||||
else:
|
||||
|
@ -144,6 +139,26 @@ cdef class Morphology:
|
|||
self.insert(tag)
|
||||
return tag.key
|
||||
|
||||
def normalize_features(self, features):
|
||||
"""Create a normalized UFEATS string from a features string or dict.
|
||||
|
||||
features (Union[dict, str]): Features as dict or UFEATS string.
|
||||
RETURNS (str): Features as normalized UFEATS string.
|
||||
"""
|
||||
if isinstance(features, str):
|
||||
features = self.feats_to_dict(features)
|
||||
if not isinstance(features, dict):
|
||||
warnings.warn(Warnings.W100.format(feature=features))
|
||||
features = {}
|
||||
features = _normalize_props(features)
|
||||
string_features = {self.strings.as_string(field): self.strings.as_string(values) for field, values in features.items()}
|
||||
# normalized UFEATS string with sorted fields and values
|
||||
norm_feats_string = self.FEATURE_SEP.join(sorted([
|
||||
self.FIELD_SEP.join([field, values])
|
||||
for field, values in string_features.items()
|
||||
]))
|
||||
return norm_feats_string or self.EMPTY_MORPH
|
||||
|
||||
cdef MorphAnalysisC create_morph_tag(self, field_feature_pairs) except *:
|
||||
"""Creates a MorphAnalysisC from a list of intified
|
||||
("Field", "Field=Value") tuples where fields with multiple values have
|
||||
|
|
|
@ -23,29 +23,45 @@ from .defaults import default_morphologizer
|
|||
@component("morphologizer", assigns=["token.morph", "token.pos"], default_model=default_morphologizer)
|
||||
class Morphologizer(Tagger):
|
||||
|
||||
POS_FEAT = "POS"
|
||||
|
||||
def __init__(self, vocab, model, **cfg):
|
||||
self.vocab = vocab
|
||||
self.model = model
|
||||
self._rehearsal_model = None
|
||||
self.cfg = dict(sorted(cfg.items()))
|
||||
self.cfg.setdefault("labels", {})
|
||||
self.cfg.setdefault("morph_pos", {})
|
||||
# to be able to set annotations without string operations on labels,
|
||||
# store mappings from morph+POS labels to token-level annotations:
|
||||
# 1) labels_morph stores a mapping from morph+POS->morph
|
||||
self.cfg.setdefault("labels_morph", {})
|
||||
# 2) labels_pos stores a mapping from morph+POS->POS
|
||||
self.cfg.setdefault("labels_pos", {})
|
||||
# add mappings for empty morph
|
||||
self.cfg["labels_morph"][Morphology.EMPTY_MORPH] = Morphology.EMPTY_MORPH
|
||||
self.cfg["labels_pos"][Morphology.EMPTY_MORPH] = POS_IDS[""]
|
||||
|
||||
@property
|
||||
def labels(self):
|
||||
return tuple(self.cfg["labels"].keys())
|
||||
return tuple(self.cfg["labels_morph"].keys())
|
||||
|
||||
def add_label(self, label):
|
||||
if not isinstance(label, str):
|
||||
raise ValueError(Errors.E187)
|
||||
if label in self.labels:
|
||||
return 0
|
||||
morph = Morphology.feats_to_dict(label)
|
||||
norm_morph_pos = self.vocab.strings[self.vocab.morphology.add(morph)]
|
||||
pos = morph.get("POS", "")
|
||||
if norm_morph_pos not in self.cfg["labels"]:
|
||||
self.cfg["labels"][norm_morph_pos] = norm_morph_pos
|
||||
self.cfg["morph_pos"][norm_morph_pos] = POS_IDS[pos]
|
||||
# normalize label
|
||||
norm_label = self.vocab.morphology.normalize_features(label)
|
||||
# extract separate POS and morph tags
|
||||
label_dict = Morphology.feats_to_dict(label)
|
||||
pos = label_dict.get(self.POS_FEAT, "")
|
||||
if self.POS_FEAT in label_dict:
|
||||
label_dict.pop(self.POS_FEAT)
|
||||
# normalize morph string and add to morphology table
|
||||
norm_morph = self.vocab.strings[self.vocab.morphology.add(label_dict)]
|
||||
# add label mappings
|
||||
if norm_label not in self.cfg["labels_morph"]:
|
||||
self.cfg["labels_morph"][norm_label] = norm_morph
|
||||
self.cfg["labels_pos"][norm_label] = POS_IDS[pos]
|
||||
return 1
|
||||
|
||||
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None,
|
||||
|
@ -53,14 +69,16 @@ class Morphologizer(Tagger):
|
|||
for example in get_examples():
|
||||
for i, token in enumerate(example.reference):
|
||||
pos = token.pos_
|
||||
morph = token.morph
|
||||
norm_morph = self.vocab.strings[self.vocab.morphology.add(morph)]
|
||||
morph = token.morph_
|
||||
# create and add the combined morph+POS label
|
||||
morph_dict = Morphology.feats_to_dict(morph)
|
||||
if pos:
|
||||
morph["POS"] = pos
|
||||
norm_morph_pos = self.vocab.strings[self.vocab.morphology.add(morph)]
|
||||
if norm_morph_pos not in self.cfg["labels"]:
|
||||
self.cfg["labels"][norm_morph_pos] = norm_morph
|
||||
self.cfg["morph_pos"][norm_morph_pos] = POS_IDS[pos]
|
||||
morph_dict[self.POS_FEAT] = pos
|
||||
norm_label = self.vocab.strings[self.vocab.morphology.add(morph_dict)]
|
||||
# add label->morph and label->POS mappings
|
||||
if norm_label not in self.cfg["labels_morph"]:
|
||||
self.cfg["labels_morph"][norm_label] = morph
|
||||
self.cfg["labels_pos"][norm_label] = POS_IDS[pos]
|
||||
self.set_output(len(self.labels))
|
||||
self.model.initialize()
|
||||
link_vectors_to_models(self.vocab)
|
||||
|
@ -79,8 +97,8 @@ class Morphologizer(Tagger):
|
|||
doc_tag_ids = doc_tag_ids.get()
|
||||
for j, tag_id in enumerate(doc_tag_ids):
|
||||
morph = self.labels[tag_id]
|
||||
doc.c[j].morph = self.vocab.morphology.add(self.cfg["labels"][morph])
|
||||
doc.c[j].pos = self.cfg["morph_pos"][morph]
|
||||
doc.c[j].morph = self.vocab.morphology.add(self.cfg["labels_morph"][morph])
|
||||
doc.c[j].pos = self.cfg["labels_pos"][morph]
|
||||
|
||||
doc.is_morphed = True
|
||||
|
||||
|
@ -94,14 +112,17 @@ class Morphologizer(Tagger):
|
|||
for i in range(len(morphs)):
|
||||
pos = pos_tags[i]
|
||||
morph = morphs[i]
|
||||
feats = Morphology.feats_to_dict(morph)
|
||||
# POS may align (same value for multiple tokens) when morph
|
||||
# doesn't, so if either is None, treat both as None here so that
|
||||
# truths doesn't end up with an unknown morph+POS combination
|
||||
if pos is None or morph is None:
|
||||
pos = None
|
||||
morph = None
|
||||
label_dict = Morphology.feats_to_dict(morph)
|
||||
if pos:
|
||||
feats["POS"] = pos
|
||||
if len(feats) > 0:
|
||||
morph = self.vocab.strings[self.vocab.morphology.add(feats)]
|
||||
if morph == "":
|
||||
morph = Morphology.EMPTY_MORPH
|
||||
eg_truths.append(morph)
|
||||
label_dict[self.POS_FEAT] = pos
|
||||
label = self.vocab.strings[self.vocab.morphology.add(label_dict)]
|
||||
eg_truths.append(label)
|
||||
truths.append(eg_truths)
|
||||
d_scores, loss = loss_func(scores, truths)
|
||||
if self.model.ops.xp.isnan(loss):
|
||||
|
|
|
@ -5,6 +5,7 @@ from spacy.gold import Example
|
|||
from spacy.lang.en import English
|
||||
from spacy.language import Language
|
||||
from spacy.tests.util import make_tempdir
|
||||
from spacy.morphology import Morphology
|
||||
|
||||
|
||||
def test_label_types():
|
||||
|
@ -23,9 +24,10 @@ TRAIN_DATA = [
|
|||
"pos": ["NOUN", "VERB", "ADJ", "NOUN"],
|
||||
},
|
||||
),
|
||||
# test combinations of morph+POS
|
||||
(
|
||||
"Eat blue ham",
|
||||
{"morphs": ["Feat=V", "Feat=J", "Feat=N"], "pos": ["VERB", "ADJ", "NOUN"]},
|
||||
{"morphs": ["Feat=V", "", ""], "pos": ["", "ADJ", ""]},
|
||||
),
|
||||
]
|
||||
|
||||
|
@ -38,7 +40,12 @@ def test_overfitting_IO():
|
|||
for inst in TRAIN_DATA:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(inst[0]), inst[1]))
|
||||
for morph, pos in zip(inst[1]["morphs"], inst[1]["pos"]):
|
||||
morphologizer.add_label(morph + "|POS=" + pos)
|
||||
if morph and pos:
|
||||
morphologizer.add_label(morph + Morphology.FEATURE_SEP + "POS" + Morphology.FIELD_SEP + pos)
|
||||
elif pos:
|
||||
morphologizer.add_label("POS" + Morphology.FIELD_SEP + pos)
|
||||
elif morph:
|
||||
morphologizer.add_label(morph)
|
||||
nlp.add_pipe(morphologizer)
|
||||
optimizer = nlp.begin_training()
|
||||
|
||||
|
@ -48,19 +55,27 @@ def test_overfitting_IO():
|
|||
assert losses["morphologizer"] < 0.00001
|
||||
|
||||
# test the trained model
|
||||
test_text = "I like blue eggs"
|
||||
test_text = "I like blue ham"
|
||||
doc = nlp(test_text)
|
||||
gold_morphs = [
|
||||
"Feat=N|POS=NOUN",
|
||||
"Feat=V|POS=VERB",
|
||||
"Feat=J|POS=ADJ",
|
||||
"Feat=N|POS=NOUN",
|
||||
"Feat=N",
|
||||
"Feat=V",
|
||||
"",
|
||||
"",
|
||||
]
|
||||
gold_pos_tags = [
|
||||
"NOUN",
|
||||
"VERB",
|
||||
"ADJ",
|
||||
"",
|
||||
]
|
||||
assert [t.morph_ for t in doc] == gold_morphs
|
||||
assert [t.pos_ for t in doc] == gold_pos_tags
|
||||
|
||||
# Also test the results are still the same after IO
|
||||
with make_tempdir() as tmp_dir:
|
||||
nlp.to_disk(tmp_dir)
|
||||
nlp2 = util.load_model_from_path(tmp_dir)
|
||||
doc2 = nlp2(test_text)
|
||||
assert gold_morphs == [t.morph_ for t in doc2]
|
||||
assert [t.morph_ for t in doc2] == gold_morphs
|
||||
assert [t.pos_ for t in doc2] == gold_pos_tags
|
||||
|
|
Loading…
Reference in New Issue