2020-04-02 12:46:32 +00:00
|
|
|
import pytest
|
|
|
|
|
|
|
|
from spacy import util
|
2020-07-06 11:02:36 +00:00
|
|
|
from spacy.gold import Example
|
2020-04-02 12:46:32 +00:00
|
|
|
from spacy.lang.en import English
|
|
|
|
from spacy.language import Language
|
|
|
|
from spacy.tests.util import make_tempdir
|
2020-07-19 09:10:51 +00:00
|
|
|
from spacy.morphology import Morphology
|
2020-04-02 12:46:32 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_label_types():
|
|
|
|
nlp = Language()
|
|
|
|
nlp.add_pipe(nlp.create_pipe("morphologizer"))
|
|
|
|
nlp.get_pipe("morphologizer").add_label("Feat=A")
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
nlp.get_pipe("morphologizer").add_label(9)
|
|
|
|
|
|
|
|
|
|
|
|
TRAIN_DATA = [
|
2020-06-20 12:15:04 +00:00
|
|
|
(
|
|
|
|
"I like green eggs",
|
|
|
|
{
|
|
|
|
"morphs": ["Feat=N", "Feat=V", "Feat=J", "Feat=N"],
|
|
|
|
"pos": ["NOUN", "VERB", "ADJ", "NOUN"],
|
|
|
|
},
|
|
|
|
),
|
2020-07-19 09:10:51 +00:00
|
|
|
# test combinations of morph+POS
|
2020-06-20 12:15:04 +00:00
|
|
|
(
|
|
|
|
"Eat blue ham",
|
2020-07-19 09:10:51 +00:00
|
|
|
{"morphs": ["Feat=V", "", ""], "pos": ["", "ADJ", ""]},
|
2020-06-20 12:15:04 +00:00
|
|
|
),
|
2020-04-02 12:46:32 +00:00
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
def test_overfitting_IO():
|
|
|
|
# Simple test to try and quickly overfit the morphologizer - ensuring the ML models work correctly
|
|
|
|
nlp = English()
|
|
|
|
morphologizer = nlp.create_pipe("morphologizer")
|
2020-07-06 11:02:36 +00:00
|
|
|
train_examples = []
|
2020-04-02 12:46:32 +00:00
|
|
|
for inst in TRAIN_DATA:
|
2020-07-06 11:02:36 +00:00
|
|
|
train_examples.append(Example.from_dict(nlp.make_doc(inst[0]), inst[1]))
|
2020-04-02 12:46:32 +00:00
|
|
|
for morph, pos in zip(inst[1]["morphs"], inst[1]["pos"]):
|
2020-07-19 09:10:51 +00:00
|
|
|
if morph and pos:
|
|
|
|
morphologizer.add_label(morph + Morphology.FEATURE_SEP + "POS" + Morphology.FIELD_SEP + pos)
|
|
|
|
elif pos:
|
|
|
|
morphologizer.add_label("POS" + Morphology.FIELD_SEP + pos)
|
|
|
|
elif morph:
|
|
|
|
morphologizer.add_label(morph)
|
2020-04-02 12:46:32 +00:00
|
|
|
nlp.add_pipe(morphologizer)
|
|
|
|
optimizer = nlp.begin_training()
|
|
|
|
|
|
|
|
for i in range(50):
|
|
|
|
losses = {}
|
2020-07-06 11:02:36 +00:00
|
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
2020-04-02 12:46:32 +00:00
|
|
|
assert losses["morphologizer"] < 0.00001
|
|
|
|
|
|
|
|
# test the trained model
|
2020-07-19 09:10:51 +00:00
|
|
|
test_text = "I like blue ham"
|
2020-04-02 12:46:32 +00:00
|
|
|
doc = nlp(test_text)
|
2020-06-20 12:15:04 +00:00
|
|
|
gold_morphs = [
|
2020-07-19 09:10:51 +00:00
|
|
|
"Feat=N",
|
|
|
|
"Feat=V",
|
|
|
|
"",
|
|
|
|
"",
|
|
|
|
]
|
|
|
|
gold_pos_tags = [
|
|
|
|
"NOUN",
|
|
|
|
"VERB",
|
|
|
|
"ADJ",
|
|
|
|
"",
|
2020-06-20 12:15:04 +00:00
|
|
|
]
|
2020-06-26 17:34:12 +00:00
|
|
|
assert [t.morph_ for t in doc] == gold_morphs
|
2020-07-19 09:10:51 +00:00
|
|
|
assert [t.pos_ for t in doc] == gold_pos_tags
|
2020-04-02 12:46:32 +00:00
|
|
|
|
|
|
|
# Also test the results are still the same after IO
|
|
|
|
with make_tempdir() as tmp_dir:
|
|
|
|
nlp.to_disk(tmp_dir)
|
|
|
|
nlp2 = util.load_model_from_path(tmp_dir)
|
|
|
|
doc2 = nlp2(test_text)
|
2020-07-19 09:10:51 +00:00
|
|
|
assert [t.morph_ for t in doc2] == gold_morphs
|
|
|
|
assert [t.pos_ for t in doc2] == gold_pos_tags
|