spaCy/spacy/syntax/parser.pyx

233 lines
8.0 KiB
Cython
Raw Normal View History

2015-06-02 16:38:41 +00:00
# cython: profile=True
2014-12-16 11:44:43 +00:00
"""
MALT-style dependency parser
"""
from __future__ import unicode_literals
cimport cython
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from libc.stdint cimport uint32_t, uint64_t
2015-06-02 16:38:41 +00:00
from libc.string cimport memset, memcpy
2014-12-16 11:44:43 +00:00
import random
import os.path
from os import path
2014-12-16 11:44:43 +00:00
import shutil
import json
from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport hash64
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
2014-12-16 11:44:43 +00:00
from util import Config
from thinc.api cimport Example
2014-12-16 11:44:43 +00:00
2014-12-16 11:44:43 +00:00
from ..tokens cimport Tokens, TokenC
from ..strings cimport StringStore
2014-12-16 11:44:43 +00:00
from .transition_system import OracleError
from .transition_system cimport TransitionSystem, Transition
2014-12-16 11:44:43 +00:00
from ..gold cimport GoldParse
2014-12-16 11:44:43 +00:00
from . import _parse_features
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from .stateclass cimport StateClass
2014-12-16 11:44:43 +00:00
2015-04-19 08:31:31 +00:00
DEBUG = False
2014-12-16 11:44:43 +00:00
def set_debug(val):
global DEBUG
DEBUG = val
def get_templates(name):
2014-12-17 10:09:29 +00:00
pf = _parse_features
2015-03-24 04:08:35 +00:00
if name == 'ner':
return pf.ner
elif name == 'debug':
return pf.unigrams
elif name.startswith('embed'):
2015-06-27 02:18:47 +00:00
return (pf.words, pf.tags, pf.labels)
else:
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
pf.tree_shape + pf.trigrams)
2014-12-16 11:44:43 +00:00
cdef class Parser:
def __init__(self, StringStore strings, model_dir, transition_system,
get_model=Model):
2014-12-16 11:44:43 +00:00
assert os.path.exists(model_dir) and os.path.isdir(model_dir)
self.cfg = Config.read(model_dir, 'config')
self.moves = transition_system(strings, self.cfg.labels)
templates = get_templates(self.cfg.features)
self.model = get_model(self.moves.n_moves, templates, model_dir)
2014-12-16 11:44:43 +00:00
def __call__(self, Tokens tokens):
cdef StateClass stcls = StateClass.init(tokens.data, tokens.length)
self.moves.initialize_state(stcls)
2015-06-28 20:36:03 +00:00
cdef Example eg = Example(self.model.n_classes, CONTEXT_SIZE,
self.model.n_feats, self.model.n_feats)
while not stcls.is_final():
2015-06-28 20:36:03 +00:00
memset(eg.c.scores, 0, eg.c.nr_class * sizeof(weight_t))
self.moves.set_valid(<bint*>eg.c.is_valid, stcls)
fill_context(eg.c.atoms, stcls)
self.model.predict(eg)
2015-06-28 20:36:03 +00:00
self.moves.c[eg.c.guess].do(stcls, self.moves.c[eg.c.guess].label)
self.moves.finalize_state(stcls)
tokens.set_parse(stcls._sent)
def train(self, Tokens tokens, GoldParse gold):
self.moves.preprocess_gold(gold)
cdef StateClass stcls = StateClass.init(tokens.data, tokens.length)
self.moves.initialize_state(stcls)
2015-06-28 20:36:03 +00:00
cdef Example eg = Example(self.model.n_classes, CONTEXT_SIZE,
self.model.n_feats, self.model.n_feats)
cdef int cost = 0
while not stcls.is_final():
2015-06-28 20:36:03 +00:00
memset(eg.c.scores, 0, eg.c.nr_class * sizeof(weight_t))
self.moves.set_costs(<bint*>eg.c.is_valid, eg.c.costs, stcls, gold)
fill_context(eg.c.atoms, stcls)
self.model.train(eg)
2015-06-28 20:36:03 +00:00
self.moves.c[eg.c.guess].do(stcls, self.moves.c[eg.c.guess].label)
cost += eg.c.cost
return cost
2015-06-28 20:36:03 +00:00
# These are passed as callbacks to thinc.search.Beam
"""
cdef int _transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1:
dest = <StateClass>_dest
src = <StateClass>_src
moves = <const Transition*>_moves
dest.clone(src)
moves[clas].do(dest, moves[clas].label)
cdef void* _init_state(Pool mem, int length, void* tokens) except NULL:
cdef StateClass st = StateClass.init(<const TokenC*>tokens, length)
st.fast_forward()
Py_INCREF(st)
return <void*>st
cdef int _check_final_state(void* _state, void* extra_args) except -1:
return (<StateClass>_state).is_final()
def _cleanup(Beam beam):
for i in range(beam.width):
Py_XDECREF(<PyObject*>beam._states[i].content)
Py_XDECREF(<PyObject*>beam._parents[i].content)
cdef hash_t _hash_state(void* _state, void* _) except 0:
return <hash_t>_state
#state = <const State*>_state
#cdef atom_t[10] rep
#rep[0] = state.stack[0] if state.stack_len >= 1 else 0
#rep[1] = state.stack[-1] if state.stack_len >= 2 else 0
#rep[2] = state.stack[-2] if state.stack_len >= 3 else 0
#rep[3] = state.i
#rep[4] = state.sent[state.stack[0]].l_kids if state.stack_len >= 1 else 0
#rep[5] = state.sent[state.stack[0]].r_kids if state.stack_len >= 1 else 0
#rep[6] = state.sent[state.stack[0]].dep if state.stack_len >= 1 else 0
#rep[7] = state.sent[state.stack[-1]].dep if state.stack_len >= 2 else 0
#if get_left(state, get_n0(state), 1) != NULL:
# rep[8] = get_left(state, get_n0(state), 1).dep
#else:
# rep[8] = 0
#rep[9] = state.sent[state.i].l_kids
#return hash64(rep, sizeof(atom_t) * 10, 0)
cdef int _beam_parse(self, Tokens tokens) except -1:
2015-06-02 00:01:33 +00:00
cdef Beam beam = Beam(self.moves.n_moves, self.cfg.beam_width)
words = [w.orth_ for w in tokens]
beam.initialize(_init_state, tokens.length, tokens.data)
beam.check_done(_check_final_state, NULL)
while not beam.is_done:
2015-06-10 04:33:39 +00:00
self._advance_beam(beam, None, False, words)
state = <StateClass>beam.at(0)
self.moves.finalize_state(state)
tokens.set_parse(state._sent)
_cleanup(beam)
def _beam_train(self, Tokens tokens, GoldParse gold_parse):
2015-06-02 00:01:33 +00:00
cdef Beam pred = Beam(self.moves.n_moves, self.cfg.beam_width)
pred.initialize(_init_state, tokens.length, tokens.data)
pred.check_done(_check_final_state, NULL)
2015-06-02 00:01:33 +00:00
cdef Beam gold = Beam(self.moves.n_moves, self.cfg.beam_width)
gold.initialize(_init_state, tokens.length, tokens.data)
gold.check_done(_check_final_state, NULL)
violn = MaxViolation()
2015-06-10 04:33:39 +00:00
words = [w.orth_ for w in tokens]
while not pred.is_done and not gold.is_done:
2015-06-10 04:33:39 +00:00
self._advance_beam(pred, gold_parse, False, words)
self._advance_beam(gold, gold_parse, True, words)
violn.check(pred, gold)
2015-06-02 16:38:41 +00:00
if pred.loss >= 1:
counts = {clas: {} for clas in range(self.model.n_classes)}
self._count_feats(counts, tokens, violn.g_hist, 1)
self._count_feats(counts, tokens, violn.p_hist, -1)
else:
counts = {}
self.model._model.update(counts)
_cleanup(pred)
_cleanup(gold)
2015-06-02 16:38:41 +00:00
return pred.loss
2015-06-10 04:33:39 +00:00
def _advance_beam(self, Beam beam, GoldParse gold, bint follow_gold, words):
cdef atom_t[CONTEXT_SIZE] context
cdef int i, j, cost
cdef bint is_valid
cdef const Transition* move
for i in range(beam.size):
stcls = <StateClass>beam.at(i)
if not stcls.is_final():
fill_context(context, stcls)
self.model.set_scores(beam.scores[i], context)
self.moves.set_valid(beam.is_valid[i], stcls)
if gold is not None:
2015-06-02 16:38:41 +00:00
for i in range(beam.size):
stcls = <StateClass>beam.at(i)
2015-06-10 04:33:39 +00:00
if not stcls.is_final():
self.moves.set_costs(beam.costs[i], stcls, gold)
if follow_gold:
for j in range(self.moves.n_moves):
beam.is_valid[i][j] *= beam.costs[i][j] == 0
beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
beam.check_done(_check_final_state, NULL)
def _count_feats(self, dict counts, Tokens tokens, list hist, int inc):
cdef atom_t[CONTEXT_SIZE] context
cdef Pool mem = Pool()
cdef StateClass stcls = StateClass.init(tokens.data, tokens.length)
self.moves.initialize_state(stcls)
cdef class_t clas
cdef int n_feats
for clas in hist:
fill_context(context, stcls)
feats = self.model._extractor.get_feats(context, &n_feats)
count_feats(counts[clas], feats, n_feats, inc)
self.moves.c[clas].do(stcls, self.moves.c[clas].label)
"""