spaCy/spacy/syntax/parser.pyx

223 lines
7.7 KiB
Cython
Raw Normal View History

2014-12-16 11:44:43 +00:00
"""
MALT-style dependency parser
"""
from __future__ import unicode_literals
cimport cython
from libc.stdint cimport uint32_t, uint64_t
2014-12-16 11:44:43 +00:00
import random
import os.path
from os import path
2014-12-16 11:44:43 +00:00
import shutil
import json
from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport hash64
2014-12-16 11:44:43 +00:00
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t
from util import Config
from thinc.features cimport Extractor
from thinc.features cimport Feature
from thinc.features cimport count_feats
from thinc.learner cimport LinearModel
from thinc.search cimport Beam
from thinc.search cimport MaxViolation
2014-12-16 11:44:43 +00:00
from ..tokens cimport Tokens, TokenC
from ..strings cimport StringStore
2014-12-16 11:44:43 +00:00
from .arc_eager cimport TransitionSystem, Transition
from .transition_system import OracleError
2014-12-16 11:44:43 +00:00
from ._state cimport State, new_state, copy_state, is_final, push_stack
from ..gold cimport GoldParse
2014-12-16 11:44:43 +00:00
from . import _parse_features
from ._parse_features cimport fill_context, CONTEXT_SIZE
2015-04-19 08:31:31 +00:00
DEBUG = False
2014-12-16 11:44:43 +00:00
def set_debug(val):
global DEBUG
DEBUG = val
cdef unicode print_state(State* s, list words):
words = list(words) + ['EOL']
2015-01-28 16:18:29 +00:00
top = words[s.stack[0]] + '_%d' % s.sent[s.stack[0]].head
second = words[s.stack[-1]] + '_%d' % s.sent[s.stack[-1]].head
third = words[s.stack[-2]] + '_%d' % s.sent[s.stack[-2]].head
2015-03-27 16:29:58 +00:00
n0 = words[s.i] if s.i < len(words) else 'EOL'
n1 = words[s.i + 1] if s.i+1 < len(words) else 'EOL'
if s.ents_len:
ent = '%s %d-%d' % (s.ent.label, s.ent.start, s.ent.end)
else:
ent = '-'
return ' '.join((ent, str(s.stack_len), third, second, top, '|', n0, n1))
2014-12-16 11:44:43 +00:00
def get_templates(name):
2014-12-17 10:09:29 +00:00
pf = _parse_features
2015-03-24 04:08:35 +00:00
if name == 'ner':
return pf.ner
elif name == 'debug':
return pf.unigrams
else:
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s0_n1 + pf.n0_n1 + \
pf.tree_shape + pf.trigrams)
2014-12-16 11:44:43 +00:00
cdef class Parser:
def __init__(self, StringStore strings, model_dir, transition_system):
2014-12-16 11:44:43 +00:00
assert os.path.exists(model_dir) and os.path.isdir(model_dir)
self.cfg = Config.read(model_dir, 'config')
self.moves = transition_system(strings, self.cfg.labels)
templates = get_templates(self.cfg.features)
self.model = Model(self.moves.n_moves, templates, model_dir)
2014-12-16 11:44:43 +00:00
def __call__(self, Tokens tokens):
if tokens.length == 0:
return 0
cdef State* state
if self.cfg.beam_width == 1:
state = self._greedy_parse(tokens)
else:
state = self._beam_parse(tokens)
self.moves.finalize_state(state)
tokens.set_parse(state.sent)
cdef State* _greedy_parse(self, Tokens tokens) except NULL:
2014-12-16 11:44:43 +00:00
cdef atom_t[CONTEXT_SIZE] context
cdef int n_feats
cdef Pool mem = Pool()
cdef State* state = new_state(mem, tokens.data, tokens.length)
self.moves.initialize_state(state)
cdef Transition guess
2014-12-16 11:44:43 +00:00
while not is_final(state):
fill_context(context, state)
scores = self.model.score(context)
guess = self.moves.best_valid(scores, state)
2015-02-18 09:41:06 +00:00
guess.do(&guess, state)
return state
cdef State* _beam_parse(self, Tokens tokens) except NULL:
cdef Beam beam = Beam(self.model.n_classes, self.cfg.beam_width)
beam.initialize(_init_state, tokens.length, tokens.data)
while not beam.is_done:
self._advance_beam(beam, None, False)
return <State*>beam.at(0)
2014-12-16 11:44:43 +00:00
def train(self, Tokens tokens, GoldParse gold):
self.moves.preprocess_gold(gold)
if self.beam_width == 1:
return self._greedy_train(tokens, gold)
else:
return self._beam_train(tokens, gold)
def _greedy_train(self, Tokens tokens, GoldParse gold):
2014-12-16 11:44:43 +00:00
cdef Pool mem = Pool()
cdef State* state = new_state(mem, tokens.data, tokens.length)
self.moves.initialize_state(state)
cdef int cost
cdef const Feature* feats
cdef const weight_t* scores
cdef Transition guess
cdef Transition best
cdef atom_t[CONTEXT_SIZE] context
loss = 0
2014-12-16 11:44:43 +00:00
while not is_final(state):
fill_context(context, state)
scores = self.model.score(context)
2014-12-16 11:44:43 +00:00
guess = self.moves.best_valid(scores, state)
best = self.moves.best_gold(scores, state, gold)
cost = guess.get_cost(&guess, state, gold)
self.model.update(context, guess.clas, best.clas, cost)
guess.do(&guess, state)
loss += cost
return loss
def _beam_train(self, Tokens tokens, GoldParse gold_parse):
cdef Beam pred = Beam(self.model.n_classes, self.cfg.beam_width)
pred.initialize(_init_state, tokens.length, tokens.data)
cdef Beam gold = Beam(self.model.n_classes, self.cfg.beam_width)
gold.initialize(_init_state, tokens.length, tokens.data)
violn = MaxViolation()
while not pred.is_done and not gold.is_done:
self._advance_beam(pred, gold_parse, False)
self._advance_beam(gold, gold_parse, True)
violn.check(pred, gold)
counts = {}
if pred._states[0].loss >= 1:
self._count_feats(counts, tokens, violn.g_hist, 1)
self._count_feats(counts, tokens, violn.p_hist, -1)
self.model._model.update(counts)
return pred._states[0].loss
def _advance_beam(self, Beam beam, GoldParse gold, bint follow_gold):
cdef atom_t[CONTEXT_SIZE] context
cdef State* state
cdef int i, j, cost
cdef bint is_valid
cdef const Transition* move
for i in range(beam.size):
state = <State*>beam.at(i)
fill_context(context, state)
scores = self.model.score(context)
validities = self.moves.get_valid(state)
if gold is None:
for j in range(self.model.n_clases):
beam.set_cell(i, j, scores[j], 0, validities[j])
elif not follow_gold:
for j in range(self.model.n_classes):
move = &self.moves.c[j]
cost = move.get_cost(move, state, gold)
beam.set_cell(i, j, scores[j], cost, validities[j])
else:
for j in range(self.model.n_classes):
move = &self.moves.c[j]
cost = move.get_cost(move, state, gold)
beam.set_cell(i, j, scores[j], cost, cost == 0)
beam.advance(_transition_state, <void*>self.moves.c)
beam.check_done(_check_final_state, NULL)
def _count_feats(self, dict counts, Tokens tokens, list hist, int inc):
cdef atom_t[CONTEXT_SIZE] context
cdef Pool mem = Pool()
cdef State* state = new_state(mem, tokens.data, tokens.length)
self.moves.initialize_state(state)
cdef class_t clas
cdef int n_feats
for clas in hist:
if is_final(state):
break
fill_context(context, state)
feats = self.model._extractor.get_feats(context, &n_feats)
count_feats(counts.setdefault(clas, {}), feats, n_feats, inc)
self.moves.c[clas].do(&self.moves.c[clas], state)
# These are passed as callbacks to thinc.search.Beam
cdef int _transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1:
dest = <State*>_dest
src = <const State*>_src
moves = <const Transition*>_moves
copy_state(dest, src)
moves[clas].do(&moves[clas], dest)
cdef void* _init_state(Pool mem, int length, void* tokens) except NULL:
state = new_state(mem, <const TokenC*>tokens, length)
push_stack(state)
return state
cdef int _check_final_state(void* state, void* extra_args) except -1:
return is_final(<State*>state)