2015-10-08 15:00:45 +00:00
|
|
|
# cython: profile=True
|
2016-10-28 15:42:00 +00:00
|
|
|
# cython: infer_types=True
|
2017-04-15 10:05:47 +00:00
|
|
|
# coding: utf8
|
2015-10-08 15:00:45 +00:00
|
|
|
from __future__ import unicode_literals
|
|
|
|
|
2017-04-15 10:13:34 +00:00
|
|
|
import ujson
|
2015-08-04 23:05:54 +00:00
|
|
|
from cymem.cymem cimport Pool
|
2015-10-08 15:00:45 +00:00
|
|
|
from preshed.maps cimport PreshMap
|
2015-08-04 23:05:54 +00:00
|
|
|
from libcpp.vector cimport vector
|
2016-09-21 12:54:55 +00:00
|
|
|
from libcpp.pair cimport pair
|
2015-10-08 15:00:45 +00:00
|
|
|
from murmurhash.mrmr cimport hash64
|
2016-09-21 12:54:55 +00:00
|
|
|
from libc.stdint cimport int32_t
|
2015-08-04 13:55:28 +00:00
|
|
|
|
2017-10-27 19:07:59 +00:00
|
|
|
from .typedefs cimport attr_t
|
|
|
|
from .typedefs cimport hash_t
|
|
|
|
from .structs cimport TokenC
|
|
|
|
from .tokens.doc cimport Doc, get_token_attr
|
2015-08-04 23:05:54 +00:00
|
|
|
from .vocab cimport Vocab
|
2018-04-03 13:50:31 +00:00
|
|
|
from .errors import Errors, TempErrors
|
2015-08-04 13:55:28 +00:00
|
|
|
|
2017-10-27 19:07:59 +00:00
|
|
|
from .attrs import IDS
|
|
|
|
from .attrs cimport attr_id_t, ID, NULL_ATTR
|
2015-10-08 15:00:45 +00:00
|
|
|
from .attrs import FLAG61 as U_ENT
|
|
|
|
from .attrs import FLAG60 as B2_ENT
|
|
|
|
from .attrs import FLAG59 as B3_ENT
|
|
|
|
from .attrs import FLAG58 as B4_ENT
|
|
|
|
from .attrs import FLAG57 as B5_ENT
|
|
|
|
from .attrs import FLAG56 as B6_ENT
|
|
|
|
from .attrs import FLAG55 as B7_ENT
|
|
|
|
from .attrs import FLAG54 as B8_ENT
|
|
|
|
from .attrs import FLAG53 as B9_ENT
|
|
|
|
from .attrs import FLAG52 as B10_ENT
|
|
|
|
from .attrs import FLAG51 as I3_ENT
|
|
|
|
from .attrs import FLAG50 as I4_ENT
|
|
|
|
from .attrs import FLAG49 as I5_ENT
|
|
|
|
from .attrs import FLAG48 as I6_ENT
|
|
|
|
from .attrs import FLAG47 as I7_ENT
|
|
|
|
from .attrs import FLAG46 as I8_ENT
|
|
|
|
from .attrs import FLAG45 as I9_ENT
|
|
|
|
from .attrs import FLAG44 as I10_ENT
|
|
|
|
from .attrs import FLAG43 as L2_ENT
|
|
|
|
from .attrs import FLAG42 as L3_ENT
|
|
|
|
from .attrs import FLAG41 as L4_ENT
|
|
|
|
from .attrs import FLAG40 as L5_ENT
|
|
|
|
from .attrs import FLAG39 as L6_ENT
|
|
|
|
from .attrs import FLAG38 as L7_ENT
|
|
|
|
from .attrs import FLAG37 as L8_ENT
|
|
|
|
from .attrs import FLAG36 as L9_ENT
|
|
|
|
from .attrs import FLAG35 as L10_ENT
|
|
|
|
|
2018-09-27 11:27:18 +00:00
|
|
|
DELIMITER = '||'
|
2015-10-08 15:00:45 +00:00
|
|
|
|
2016-09-21 12:54:55 +00:00
|
|
|
cpdef enum quantifier_t:
|
|
|
|
_META
|
|
|
|
ONE
|
|
|
|
ZERO
|
|
|
|
ZERO_ONE
|
|
|
|
ZERO_PLUS
|
|
|
|
|
|
|
|
|
|
|
|
cdef enum action_t:
|
|
|
|
REJECT
|
|
|
|
ADVANCE
|
|
|
|
REPEAT
|
|
|
|
ACCEPT
|
|
|
|
ADVANCE_ZERO
|
2017-10-24 12:26:27 +00:00
|
|
|
ACCEPT_PREV
|
2016-09-21 12:54:55 +00:00
|
|
|
PANIC
|
|
|
|
|
2018-09-27 11:27:18 +00:00
|
|
|
# A "match expression" consists of one or more token patterns
|
2017-10-09 06:59:35 +00:00
|
|
|
# Each token pattern consists of a quantifier and 0+ (attr, value) pairs.
|
|
|
|
# A state is an (int, pattern pointer) pair, where the int is the start
|
|
|
|
# position, and the pattern pointer shows where we're up to
|
|
|
|
# in the pattern.
|
2016-09-21 12:54:55 +00:00
|
|
|
|
|
|
|
cdef struct AttrValueC:
|
2015-08-04 23:05:54 +00:00
|
|
|
attr_id_t attr
|
|
|
|
attr_t value
|
2015-08-04 13:55:28 +00:00
|
|
|
|
2016-09-21 12:54:55 +00:00
|
|
|
cdef struct TokenPatternC:
|
|
|
|
AttrValueC* attrs
|
|
|
|
int32_t nr_attr
|
|
|
|
quantifier_t quantifier
|
2015-08-04 13:55:28 +00:00
|
|
|
|
2016-09-21 12:54:55 +00:00
|
|
|
ctypedef TokenPatternC* TokenPatternC_ptr
|
2018-02-18 09:59:28 +00:00
|
|
|
ctypedef pair[int, TokenPatternC_ptr] StateC
|
2016-09-21 12:54:55 +00:00
|
|
|
|
2018-09-27 11:27:18 +00:00
|
|
|
DEF PADDING = 5
|
|
|
|
|
2016-09-21 12:54:55 +00:00
|
|
|
|
2017-05-20 11:54:53 +00:00
|
|
|
cdef TokenPatternC* init_pattern(Pool mem, attr_t entity_id,
|
2016-10-17 13:23:31 +00:00
|
|
|
object token_specs) except NULL:
|
2016-09-21 12:54:55 +00:00
|
|
|
pattern = <TokenPatternC*>mem.alloc(len(token_specs) + 1, sizeof(TokenPatternC))
|
2015-08-04 23:05:54 +00:00
|
|
|
cdef int i
|
2016-09-21 12:54:55 +00:00
|
|
|
for i, (quantifier, spec) in enumerate(token_specs):
|
|
|
|
pattern[i].quantifier = quantifier
|
|
|
|
pattern[i].attrs = <AttrValueC*>mem.alloc(len(spec), sizeof(AttrValueC))
|
|
|
|
pattern[i].nr_attr = len(spec)
|
2015-08-04 23:05:54 +00:00
|
|
|
for j, (attr, value) in enumerate(spec):
|
2016-09-21 12:54:55 +00:00
|
|
|
pattern[i].attrs[j].attr = attr
|
|
|
|
pattern[i].attrs[j].value = value
|
2015-08-04 23:05:54 +00:00
|
|
|
i = len(token_specs)
|
2017-05-20 11:54:53 +00:00
|
|
|
pattern[i].attrs = <AttrValueC*>mem.alloc(2, sizeof(AttrValueC))
|
2016-09-21 12:54:55 +00:00
|
|
|
pattern[i].attrs[0].attr = ID
|
|
|
|
pattern[i].attrs[0].value = entity_id
|
|
|
|
pattern[i].nr_attr = 0
|
2015-08-04 23:05:54 +00:00
|
|
|
return pattern
|
|
|
|
|
2017-05-20 11:54:53 +00:00
|
|
|
cdef attr_t get_pattern_key(const TokenPatternC* pattern) except 0:
|
|
|
|
while pattern.nr_attr != 0:
|
|
|
|
pattern += 1
|
|
|
|
id_attr = pattern[0].attrs[0]
|
2018-04-03 13:50:31 +00:00
|
|
|
if id_attr.attr != ID:
|
|
|
|
raise ValueError(Errors.E074.format(attr=ID, bad_attr=id_attr.attr))
|
2017-05-20 11:54:53 +00:00
|
|
|
return id_attr.value
|
|
|
|
|
|
|
|
|
2016-09-21 12:54:55 +00:00
|
|
|
cdef int get_action(const TokenPatternC* pattern, const TokenC* token) nogil:
|
2017-10-24 12:26:27 +00:00
|
|
|
lookahead = &pattern[1]
|
2016-09-21 12:54:55 +00:00
|
|
|
for attr in pattern.attrs[:pattern.nr_attr]:
|
|
|
|
if get_token_attr(token, attr.attr) != attr.value:
|
|
|
|
if pattern.quantifier == ONE:
|
|
|
|
return REJECT
|
|
|
|
elif pattern.quantifier == ZERO:
|
2017-10-24 12:26:27 +00:00
|
|
|
return ACCEPT if lookahead.nr_attr == 0 else ADVANCE
|
2016-09-21 12:54:55 +00:00
|
|
|
elif pattern.quantifier in (ZERO_ONE, ZERO_PLUS):
|
2017-10-24 12:26:27 +00:00
|
|
|
return ACCEPT_PREV if lookahead.nr_attr == 0 else ADVANCE_ZERO
|
2016-09-21 12:54:55 +00:00
|
|
|
else:
|
|
|
|
return PANIC
|
|
|
|
if pattern.quantifier == ZERO:
|
|
|
|
return REJECT
|
2017-10-24 12:26:27 +00:00
|
|
|
elif lookahead.nr_attr == 0:
|
2018-02-18 09:59:28 +00:00
|
|
|
return ACCEPT
|
2016-09-21 12:54:55 +00:00
|
|
|
elif pattern.quantifier in (ONE, ZERO_ONE):
|
2017-10-24 12:26:27 +00:00
|
|
|
return ADVANCE
|
2016-09-21 12:54:55 +00:00
|
|
|
elif pattern.quantifier == ZERO_PLUS:
|
2017-10-09 06:59:35 +00:00
|
|
|
# This is a bandaid over the 'shadowing' problem described here:
|
|
|
|
# https://github.com/explosion/spaCy/issues/864
|
2017-10-24 12:26:27 +00:00
|
|
|
next_action = get_action(lookahead, token)
|
2017-10-16 11:38:20 +00:00
|
|
|
if next_action is REJECT:
|
|
|
|
return REPEAT
|
|
|
|
else:
|
2018-02-18 09:59:28 +00:00
|
|
|
return ADVANCE_ZERO
|
2016-09-21 12:54:55 +00:00
|
|
|
else:
|
|
|
|
return PANIC
|
2015-08-04 23:05:54 +00:00
|
|
|
|
|
|
|
|
2015-08-06 12:33:21 +00:00
|
|
|
def _convert_strings(token_specs, string_store):
|
2016-09-21 12:54:55 +00:00
|
|
|
# Support 'syntactic sugar' operator '+', as combination of ONE, ZERO_PLUS
|
|
|
|
operators = {'!': (ZERO,), '*': (ZERO_PLUS,), '+': (ONE, ZERO_PLUS),
|
2017-10-27 19:07:59 +00:00
|
|
|
'?': (ZERO_ONE,), '1': (ONE,)}
|
2016-09-21 12:54:55 +00:00
|
|
|
tokens = []
|
|
|
|
op = ONE
|
2015-08-06 12:33:21 +00:00
|
|
|
for spec in token_specs:
|
2017-10-07 01:36:15 +00:00
|
|
|
if not spec:
|
|
|
|
# Signifier for 'any token'
|
|
|
|
tokens.append((ONE, [(NULL_ATTR, 0)]))
|
|
|
|
continue
|
2016-11-08 16:14:26 +00:00
|
|
|
token = []
|
2016-09-21 12:54:55 +00:00
|
|
|
ops = (ONE,)
|
2015-08-06 12:33:21 +00:00
|
|
|
for attr, value in spec.items():
|
2016-09-21 12:54:55 +00:00
|
|
|
if isinstance(attr, basestring) and attr.upper() == 'OP':
|
|
|
|
if value in operators:
|
|
|
|
ops = operators[value]
|
|
|
|
else:
|
2018-04-03 13:50:31 +00:00
|
|
|
keys = ', '.join(operators.keys())
|
|
|
|
raise KeyError(Errors.E011.format(op=value, opts=keys))
|
2015-08-06 12:33:21 +00:00
|
|
|
if isinstance(attr, basestring):
|
2017-10-27 19:07:59 +00:00
|
|
|
attr = IDS.get(attr.upper())
|
2015-08-06 12:33:21 +00:00
|
|
|
if isinstance(value, basestring):
|
2017-05-28 13:10:22 +00:00
|
|
|
value = string_store.add(value)
|
2015-09-06 15:53:12 +00:00
|
|
|
if isinstance(value, bool):
|
|
|
|
value = int(value)
|
2016-04-14 08:37:39 +00:00
|
|
|
if attr is not None:
|
2016-09-21 12:54:55 +00:00
|
|
|
token.append((attr, value))
|
|
|
|
for op in ops:
|
|
|
|
tokens.append((op, token))
|
|
|
|
return tokens
|
2015-10-08 15:00:45 +00:00
|
|
|
|
|
|
|
|
2017-03-31 11:58:59 +00:00
|
|
|
def merge_phrase(matcher, doc, i, matches):
|
2017-05-19 19:47:06 +00:00
|
|
|
"""Callback to merge a phrase on match."""
|
2017-03-31 11:58:59 +00:00
|
|
|
ent_id, label, start, end = matches[i]
|
2017-10-27 19:07:59 +00:00
|
|
|
span = doc[start:end]
|
2017-03-31 11:58:59 +00:00
|
|
|
span.merge(ent_type=label, ent_id=ent_id)
|
|
|
|
|
|
|
|
|
2018-01-24 14:42:11 +00:00
|
|
|
def unpickle_matcher(vocab, patterns, callbacks):
|
|
|
|
matcher = Matcher(vocab)
|
|
|
|
for key, specs in patterns.items():
|
|
|
|
callback = callbacks.get(key, None)
|
|
|
|
matcher.add(key, callback, *specs)
|
|
|
|
return matcher
|
|
|
|
|
|
|
|
|
2015-08-04 23:05:54 +00:00
|
|
|
cdef class Matcher:
|
2017-05-19 19:47:06 +00:00
|
|
|
"""Match sequences of tokens, based on pattern rules."""
|
2015-08-04 23:05:54 +00:00
|
|
|
cdef Pool mem
|
2016-09-21 12:54:55 +00:00
|
|
|
cdef vector[TokenPatternC*] patterns
|
2015-08-26 17:17:02 +00:00
|
|
|
cdef readonly Vocab vocab
|
2016-09-24 09:20:42 +00:00
|
|
|
cdef public object _patterns
|
2016-10-17 13:23:31 +00:00
|
|
|
cdef public object _entities
|
|
|
|
cdef public object _callbacks
|
2016-11-08 16:14:26 +00:00
|
|
|
|
2017-05-20 11:54:53 +00:00
|
|
|
def __init__(self, vocab):
|
2017-05-19 19:47:06 +00:00
|
|
|
"""Create the Matcher.
|
|
|
|
|
|
|
|
vocab (Vocab): The vocabulary object, which must be shared with the
|
|
|
|
documents the matcher will operate on.
|
|
|
|
RETURNS (Matcher): The newly constructed object.
|
2016-11-01 11:25:36 +00:00
|
|
|
"""
|
2016-10-17 13:23:31 +00:00
|
|
|
self._patterns = {}
|
|
|
|
self._entities = {}
|
|
|
|
self._callbacks = {}
|
2015-10-12 08:33:11 +00:00
|
|
|
self.vocab = vocab
|
|
|
|
self.mem = Pool()
|
|
|
|
|
2016-10-17 14:49:43 +00:00
|
|
|
def __reduce__(self):
|
2018-01-24 14:42:11 +00:00
|
|
|
data = (self.vocab, self._patterns, self._callbacks)
|
|
|
|
return (unpickle_matcher, data, None, None)
|
2016-11-08 16:14:26 +00:00
|
|
|
|
2017-05-20 11:54:53 +00:00
|
|
|
def __len__(self):
|
2017-05-20 12:32:34 +00:00
|
|
|
"""Get the number of rules added to the matcher. Note that this only
|
|
|
|
returns the number of rules (identical with the number of IDs), not the
|
|
|
|
number of individual patterns.
|
2017-05-20 12:26:10 +00:00
|
|
|
|
|
|
|
RETURNS (int): The number of rules.
|
|
|
|
"""
|
2017-05-20 11:54:53 +00:00
|
|
|
return len(self._patterns)
|
|
|
|
|
|
|
|
def __contains__(self, key):
|
2017-05-20 12:26:10 +00:00
|
|
|
"""Check whether the matcher contains rules for a match ID.
|
|
|
|
|
|
|
|
key (unicode): The match ID.
|
|
|
|
RETURNS (bool): Whether the matcher contains rules for this match ID.
|
|
|
|
"""
|
2017-10-25 14:19:38 +00:00
|
|
|
return self._normalize_key(key) in self._patterns
|
2017-05-20 11:54:53 +00:00
|
|
|
|
2017-05-23 09:37:40 +00:00
|
|
|
def add(self, key, on_match, *patterns):
|
2017-10-27 19:07:59 +00:00
|
|
|
"""Add a match-rule to the matcher. A match-rule consists of: an ID
|
|
|
|
key, an on_match callback, and one or more patterns.
|
2017-10-16 11:38:20 +00:00
|
|
|
|
|
|
|
If the key exists, the patterns are appended to the previous ones, and
|
2017-10-27 19:07:59 +00:00
|
|
|
the previous on_match callback is replaced. The `on_match` callback
|
|
|
|
will receive the arguments `(matcher, doc, i, matches)`. You can also
|
|
|
|
set `on_match` to `None` to not perform any actions.
|
2017-10-16 11:38:20 +00:00
|
|
|
|
|
|
|
A pattern consists of one or more `token_specs`, where a `token_spec`
|
|
|
|
is a dictionary mapping attribute IDs to values, and optionally a
|
|
|
|
quantifier operator under the key "op". The available quantifiers are:
|
|
|
|
|
|
|
|
'!': Negate the pattern, by requiring it to match exactly 0 times.
|
|
|
|
'?': Make the pattern optional, by allowing it to match 0 or 1 times.
|
|
|
|
'+': Require the pattern to match 1 or more times.
|
|
|
|
'*': Allow the pattern to zero or more times.
|
|
|
|
|
|
|
|
The + and * operators are usually interpretted "greedily", i.e. longer
|
|
|
|
matches are returned where possible. However, if you specify two '+'
|
|
|
|
and '*' patterns in a row and their matches overlap, the first
|
2017-10-27 19:07:59 +00:00
|
|
|
operator will behave non-greedily. This quirk in the semantics makes
|
|
|
|
the matcher more efficient, by avoiding the need for back-tracking.
|
2017-10-25 10:10:16 +00:00
|
|
|
|
|
|
|
key (unicode): The match ID.
|
|
|
|
on_match (callable): Callback executed on match.
|
2018-09-27 11:27:18 +00:00
|
|
|
*patterns (list): List of token descriptions.
|
2016-11-01 11:25:36 +00:00
|
|
|
"""
|
2017-05-20 11:54:53 +00:00
|
|
|
for pattern in patterns:
|
|
|
|
if len(pattern) == 0:
|
2018-04-03 13:50:31 +00:00
|
|
|
raise ValueError(Errors.E012.format(key=key))
|
2017-05-20 11:54:53 +00:00
|
|
|
key = self._normalize_key(key)
|
|
|
|
for pattern in patterns:
|
|
|
|
specs = _convert_strings(pattern, self.vocab.strings)
|
|
|
|
self.patterns.push_back(init_pattern(self.mem, key, specs))
|
2018-01-24 14:42:11 +00:00
|
|
|
self._patterns.setdefault(key, [])
|
|
|
|
self._callbacks[key] = on_match
|
|
|
|
self._patterns[key].extend(patterns)
|
2017-05-20 11:54:53 +00:00
|
|
|
|
|
|
|
def remove(self, key):
|
2017-05-20 12:26:10 +00:00
|
|
|
"""Remove a rule from the matcher. A KeyError is raised if the key does
|
|
|
|
not exist.
|
|
|
|
|
|
|
|
key (unicode): The ID of the match rule.
|
2016-11-01 11:25:36 +00:00
|
|
|
"""
|
2017-05-20 11:54:53 +00:00
|
|
|
key = self._normalize_key(key)
|
|
|
|
self._patterns.pop(key)
|
|
|
|
self._callbacks.pop(key)
|
|
|
|
cdef int i = 0
|
|
|
|
while i < self.patterns.size():
|
|
|
|
pattern_key = get_pattern_key(self.patterns.at(i))
|
|
|
|
if pattern_key == key:
|
|
|
|
self.patterns.erase(self.patterns.begin()+i)
|
|
|
|
else:
|
|
|
|
i += 1
|
2016-10-17 13:23:31 +00:00
|
|
|
|
2017-05-20 11:54:53 +00:00
|
|
|
def has_key(self, key):
|
|
|
|
"""Check whether the matcher has a rule with a given key.
|
2016-11-01 11:25:36 +00:00
|
|
|
|
2017-05-20 11:54:53 +00:00
|
|
|
key (string or int): The key to check.
|
|
|
|
RETURNS (bool): Whether the matcher has the rule.
|
2016-11-01 11:25:36 +00:00
|
|
|
"""
|
2017-05-20 11:54:53 +00:00
|
|
|
key = self._normalize_key(key)
|
|
|
|
return key in self._patterns
|
2016-10-17 13:23:31 +00:00
|
|
|
|
2017-05-20 11:54:53 +00:00
|
|
|
def get(self, key, default=None):
|
2017-05-20 12:43:10 +00:00
|
|
|
"""Retrieve the pattern stored for a key.
|
2016-11-01 11:25:36 +00:00
|
|
|
|
2017-05-20 11:54:53 +00:00
|
|
|
key (unicode or int): The key to retrieve.
|
|
|
|
RETURNS (tuple): The rule, as an (on_match, patterns) tuple.
|
2016-11-01 11:25:36 +00:00
|
|
|
"""
|
2017-05-20 11:54:53 +00:00
|
|
|
key = self._normalize_key(key)
|
|
|
|
if key not in self._patterns:
|
|
|
|
return default
|
|
|
|
return (self._callbacks[key], self._patterns[key])
|
|
|
|
|
|
|
|
def pipe(self, docs, batch_size=1000, n_threads=2):
|
|
|
|
"""Match a stream of documents, yielding them in turn.
|
|
|
|
|
|
|
|
docs (iterable): A stream of documents.
|
2017-10-27 19:07:59 +00:00
|
|
|
batch_size (int): Number of documents to accumulate into a working set.
|
2017-05-20 11:54:53 +00:00
|
|
|
n_threads (int): The number of threads with which to work on the buffer
|
2017-10-27 19:07:59 +00:00
|
|
|
in parallel, if the implementation supports multi-threading.
|
2017-05-20 11:54:53 +00:00
|
|
|
YIELDS (Doc): Documents, in order.
|
|
|
|
"""
|
|
|
|
for doc in docs:
|
|
|
|
self(doc)
|
|
|
|
yield doc
|
2015-08-04 23:05:54 +00:00
|
|
|
|
2017-05-20 11:54:53 +00:00
|
|
|
def __call__(self, Doc doc):
|
2017-10-27 19:07:59 +00:00
|
|
|
"""Find all token sequences matching the supplied pattern.
|
2017-05-19 19:47:06 +00:00
|
|
|
|
|
|
|
doc (Doc): The document to match over.
|
2017-10-07 01:36:15 +00:00
|
|
|
RETURNS (list): A list of `(key, start, end)` tuples,
|
2017-05-19 19:47:06 +00:00
|
|
|
describing the matches. A match tuple describes a span
|
2017-05-20 11:54:53 +00:00
|
|
|
`doc[start:end]`. The `label_id` and `key` are both integers.
|
2016-11-01 11:25:36 +00:00
|
|
|
"""
|
2016-09-21 12:54:55 +00:00
|
|
|
cdef vector[StateC] partials
|
2015-08-04 23:05:54 +00:00
|
|
|
cdef int n_partials = 0
|
|
|
|
cdef int q = 0
|
|
|
|
cdef int i, token_i
|
|
|
|
cdef const TokenC* token
|
2016-09-21 12:54:55 +00:00
|
|
|
cdef StateC state
|
2015-08-04 13:55:28 +00:00
|
|
|
matches = []
|
2015-08-04 23:05:54 +00:00
|
|
|
for token_i in range(doc.length):
|
2015-11-03 13:15:14 +00:00
|
|
|
token = &doc.c[token_i]
|
2015-08-04 23:05:54 +00:00
|
|
|
q = 0
|
2017-10-27 19:07:59 +00:00
|
|
|
# Go over the open matches, extending or finalizing if able.
|
|
|
|
# Otherwise, we over-write them (q doesn't advance)
|
2018-02-18 09:59:28 +00:00
|
|
|
for state in partials:
|
|
|
|
action = get_action(state.second, token)
|
2016-10-28 15:42:00 +00:00
|
|
|
if action == PANIC:
|
2018-04-03 13:50:31 +00:00
|
|
|
raise ValueError(Errors.E013)
|
2016-09-21 12:54:55 +00:00
|
|
|
while action == ADVANCE_ZERO:
|
2018-02-18 09:59:28 +00:00
|
|
|
state.second += 1
|
|
|
|
action = get_action(state.second, token)
|
2017-10-24 12:26:27 +00:00
|
|
|
if action == PANIC:
|
2018-04-03 13:50:31 +00:00
|
|
|
raise ValueError(Errors.E013)
|
2016-09-21 12:54:55 +00:00
|
|
|
if action == REPEAT:
|
|
|
|
# Leave the state in the queue, and advance to next slot
|
2017-10-27 19:07:59 +00:00
|
|
|
# (i.e. we don't overwrite -- we want to greedily match
|
|
|
|
# more pattern.
|
2016-09-21 12:54:55 +00:00
|
|
|
q += 1
|
|
|
|
elif action == REJECT:
|
|
|
|
pass
|
|
|
|
elif action == ADVANCE:
|
2016-10-28 15:42:00 +00:00
|
|
|
partials[q] = state
|
2018-02-18 09:59:28 +00:00
|
|
|
partials[q].second += 1
|
2016-09-21 12:54:55 +00:00
|
|
|
q += 1
|
2017-10-24 12:26:27 +00:00
|
|
|
elif action in (ACCEPT, ACCEPT_PREV):
|
2017-10-27 19:07:59 +00:00
|
|
|
# TODO: What to do about patterns starting with ZERO? Need
|
|
|
|
# to adjust the start position.
|
2018-02-18 09:59:28 +00:00
|
|
|
start = state.first
|
2017-10-24 12:26:27 +00:00
|
|
|
end = token_i+1 if action == ACCEPT else token_i
|
2018-02-18 09:59:28 +00:00
|
|
|
ent_id = state.second[1].attrs[0].value
|
|
|
|
label = state.second[1].attrs[1].value
|
|
|
|
matches.append((ent_id, start, end))
|
2017-10-24 12:26:27 +00:00
|
|
|
|
2015-08-04 23:05:54 +00:00
|
|
|
partials.resize(q)
|
2015-10-08 15:00:45 +00:00
|
|
|
# Check whether we open any new patterns on this token
|
2016-09-21 12:54:55 +00:00
|
|
|
for pattern in self.patterns:
|
|
|
|
action = get_action(pattern, token)
|
2016-10-28 15:42:00 +00:00
|
|
|
if action == PANIC:
|
2018-04-03 13:50:31 +00:00
|
|
|
raise ValueError(Errors.E013)
|
2018-02-18 09:59:28 +00:00
|
|
|
while action == ADVANCE_ZERO:
|
2016-09-21 12:54:55 +00:00
|
|
|
pattern += 1
|
|
|
|
action = get_action(pattern, token)
|
|
|
|
if action == REPEAT:
|
2018-02-18 09:59:28 +00:00
|
|
|
state.first = token_i
|
|
|
|
state.second = pattern
|
2016-09-21 12:54:55 +00:00
|
|
|
partials.push_back(state)
|
|
|
|
elif action == ADVANCE:
|
2017-10-27 19:07:59 +00:00
|
|
|
# TODO: What to do about patterns starting with ZERO? Need
|
|
|
|
# to adjust the start position.
|
2018-02-18 09:59:28 +00:00
|
|
|
state.first = token_i
|
|
|
|
state.second = pattern + 1
|
2016-09-21 12:54:55 +00:00
|
|
|
partials.push_back(state)
|
2017-10-24 12:26:27 +00:00
|
|
|
elif action in (ACCEPT, ACCEPT_PREV):
|
2016-10-17 14:49:51 +00:00
|
|
|
start = token_i
|
2017-10-24 12:26:27 +00:00
|
|
|
end = token_i+1 if action == ACCEPT else token_i
|
2016-09-21 12:54:55 +00:00
|
|
|
ent_id = pattern[1].attrs[0].value
|
|
|
|
label = pattern[1].attrs[1].value
|
2018-02-18 09:59:28 +00:00
|
|
|
matches.append((ent_id, start, end))
|
2017-02-24 13:27:02 +00:00
|
|
|
# Look for open patterns that are actually satisfied
|
|
|
|
for state in partials:
|
2018-02-18 09:59:28 +00:00
|
|
|
while state.second.quantifier in (ZERO, ZERO_ONE, ZERO_PLUS):
|
|
|
|
state.second += 1
|
|
|
|
if state.second.nr_attr == 0:
|
|
|
|
start = state.first
|
2017-02-24 13:27:02 +00:00
|
|
|
end = len(doc)
|
2018-02-18 09:59:28 +00:00
|
|
|
ent_id = state.second.attrs[0].value
|
|
|
|
label = state.second.attrs[0].value
|
|
|
|
matches.append((ent_id, start, end))
|
2017-05-22 10:59:50 +00:00
|
|
|
for i, (ent_id, start, end) in enumerate(matches):
|
2016-10-17 13:23:31 +00:00
|
|
|
on_match = self._callbacks.get(ent_id)
|
|
|
|
if on_match is not None:
|
|
|
|
on_match(self, doc, i, matches)
|
2015-08-04 13:55:28 +00:00
|
|
|
return matches
|
2015-10-08 15:00:45 +00:00
|
|
|
|
2017-05-20 11:54:53 +00:00
|
|
|
def _normalize_key(self, key):
|
|
|
|
if isinstance(key, basestring):
|
2017-05-28 13:10:22 +00:00
|
|
|
return self.vocab.strings.add(key)
|
2017-05-20 11:54:53 +00:00
|
|
|
else:
|
|
|
|
return key
|
2016-02-03 01:04:55 +00:00
|
|
|
|
2015-10-08 15:00:45 +00:00
|
|
|
|
2016-10-17 13:23:31 +00:00
|
|
|
def get_bilou(length):
|
|
|
|
if length == 1:
|
|
|
|
return [U_ENT]
|
|
|
|
elif length == 2:
|
|
|
|
return [B2_ENT, L2_ENT]
|
|
|
|
elif length == 3:
|
|
|
|
return [B3_ENT, I3_ENT, L3_ENT]
|
|
|
|
elif length == 4:
|
|
|
|
return [B4_ENT, I4_ENT, I4_ENT, L4_ENT]
|
|
|
|
elif length == 5:
|
|
|
|
return [B5_ENT, I5_ENT, I5_ENT, I5_ENT, L5_ENT]
|
|
|
|
elif length == 6:
|
|
|
|
return [B6_ENT, I6_ENT, I6_ENT, I6_ENT, I6_ENT, L6_ENT]
|
|
|
|
elif length == 7:
|
|
|
|
return [B7_ENT, I7_ENT, I7_ENT, I7_ENT, I7_ENT, I7_ENT, L7_ENT]
|
|
|
|
elif length == 8:
|
|
|
|
return [B8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, L8_ENT]
|
|
|
|
elif length == 9:
|
2017-10-27 19:07:59 +00:00
|
|
|
return [B9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT,
|
|
|
|
L9_ENT]
|
2016-10-17 13:23:31 +00:00
|
|
|
elif length == 10:
|
|
|
|
return [B10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT,
|
|
|
|
I10_ENT, I10_ENT, L10_ENT]
|
|
|
|
else:
|
2018-04-03 13:50:31 +00:00
|
|
|
raise ValueError(TempErrors.T001)
|
2016-10-17 13:23:31 +00:00
|
|
|
|
|
|
|
|
2015-10-08 15:00:45 +00:00
|
|
|
cdef class PhraseMatcher:
|
|
|
|
cdef Pool mem
|
|
|
|
cdef Vocab vocab
|
|
|
|
cdef Matcher matcher
|
|
|
|
cdef PreshMap phrase_ids
|
|
|
|
cdef int max_length
|
|
|
|
cdef attr_t* _phrase_key
|
2017-09-20 20:20:35 +00:00
|
|
|
cdef public object _callbacks
|
2017-09-20 20:26:40 +00:00
|
|
|
cdef public object _patterns
|
2017-09-20 20:20:35 +00:00
|
|
|
|
|
|
|
def __init__(self, Vocab vocab, max_length=10):
|
2015-10-08 15:00:45 +00:00
|
|
|
self.mem = Pool()
|
|
|
|
self._phrase_key = <attr_t*>self.mem.alloc(max_length, sizeof(attr_t))
|
|
|
|
self.max_length = max_length
|
|
|
|
self.vocab = vocab
|
2017-09-20 19:54:31 +00:00
|
|
|
self.matcher = Matcher(self.vocab)
|
2015-10-08 15:00:45 +00:00
|
|
|
self.phrase_ids = PreshMap()
|
|
|
|
abstract_patterns = []
|
|
|
|
for length in range(1, max_length):
|
2017-10-27 19:07:59 +00:00
|
|
|
abstract_patterns.append([{tag: True}
|
|
|
|
for tag in get_bilou(length)])
|
2017-09-20 19:54:31 +00:00
|
|
|
self.matcher.add('Candidate', None, *abstract_patterns)
|
2017-09-20 20:20:35 +00:00
|
|
|
self._callbacks = {}
|
2017-09-26 13:35:53 +00:00
|
|
|
|
2017-09-26 11:11:17 +00:00
|
|
|
def __len__(self):
|
2017-10-25 10:09:56 +00:00
|
|
|
"""Get the number of rules added to the matcher. Note that this only
|
|
|
|
returns the number of rules (identical with the number of IDs), not the
|
|
|
|
number of individual patterns.
|
|
|
|
|
|
|
|
RETURNS (int): The number of rules.
|
|
|
|
"""
|
|
|
|
return len(self.phrase_ids)
|
2017-09-26 13:35:53 +00:00
|
|
|
|
|
|
|
def __contains__(self, key):
|
2017-10-25 10:10:04 +00:00
|
|
|
"""Check whether the matcher contains rules for a match ID.
|
|
|
|
|
|
|
|
key (unicode): The match ID.
|
|
|
|
RETURNS (bool): Whether the matcher contains rules for this match ID.
|
|
|
|
"""
|
|
|
|
cdef hash_t ent_id = self.matcher._normalize_key(key)
|
2017-10-25 14:31:11 +00:00
|
|
|
return ent_id in self._callbacks
|
2015-10-08 15:00:45 +00:00
|
|
|
|
2017-09-20 20:26:40 +00:00
|
|
|
def __reduce__(self):
|
|
|
|
return (self.__class__, (self.vocab,), None, None)
|
|
|
|
|
2017-09-20 20:20:35 +00:00
|
|
|
def add(self, key, on_match, *docs):
|
2017-10-27 19:07:59 +00:00
|
|
|
"""Add a match-rule to the matcher. A match-rule consists of: an ID
|
|
|
|
key, an on_match callback, and one or more patterns.
|
2017-10-25 10:10:16 +00:00
|
|
|
|
|
|
|
key (unicode): The match ID.
|
|
|
|
on_match (callable): Callback executed on match.
|
|
|
|
*docs (Doc): `Doc` objects representing match patterns.
|
|
|
|
"""
|
2017-09-20 20:20:35 +00:00
|
|
|
cdef Doc doc
|
|
|
|
for doc in docs:
|
|
|
|
if len(doc) >= self.max_length:
|
2018-04-03 13:50:31 +00:00
|
|
|
raise ValueError(TempErrors.T002.format(doc_len=len(doc),
|
|
|
|
max_len=self.max_length))
|
2017-09-20 20:20:35 +00:00
|
|
|
cdef hash_t ent_id = self.matcher._normalize_key(key)
|
|
|
|
self._callbacks[ent_id] = on_match
|
|
|
|
cdef int length
|
2015-10-08 15:00:45 +00:00
|
|
|
cdef int i
|
2017-09-20 20:20:35 +00:00
|
|
|
cdef hash_t phrase_hash
|
|
|
|
for doc in docs:
|
|
|
|
length = doc.length
|
|
|
|
tags = get_bilou(length)
|
|
|
|
for i in range(self.max_length):
|
|
|
|
self._phrase_key[i] = 0
|
|
|
|
for i, tag in enumerate(tags):
|
|
|
|
lexeme = self.vocab[doc.c[i].lex.orth]
|
|
|
|
lexeme.set_flag(tag, True)
|
|
|
|
self._phrase_key[i] = lexeme.orth
|
|
|
|
phrase_hash = hash64(self._phrase_key,
|
|
|
|
self.max_length * sizeof(attr_t), 0)
|
2017-09-20 21:55:30 +00:00
|
|
|
self.phrase_ids.set(phrase_hash, <void*>ent_id)
|
2015-10-08 15:00:45 +00:00
|
|
|
|
|
|
|
def __call__(self, Doc doc):
|
2018-09-27 11:27:18 +00:00
|
|
|
|
2017-10-25 10:10:16 +00:00
|
|
|
"""Find all sequences matching the supplied patterns on the `Doc`.
|
|
|
|
|
|
|
|
doc (Doc): The document to match over.
|
|
|
|
RETURNS (list): A list of `(key, start, end)` tuples,
|
|
|
|
describing the matches. A match tuple describes a span
|
|
|
|
`doc[start:end]`. The `label_id` and `key` are both integers.
|
|
|
|
"""
|
2017-09-20 20:20:35 +00:00
|
|
|
matches = []
|
|
|
|
for _, start, end in self.matcher(doc):
|
|
|
|
ent_id = self.accept_match(doc, start, end)
|
|
|
|
if ent_id is not None:
|
|
|
|
matches.append((ent_id, start, end))
|
|
|
|
for i, (ent_id, start, end) in enumerate(matches):
|
|
|
|
on_match = self._callbacks.get(ent_id)
|
|
|
|
if on_match is not None:
|
|
|
|
on_match(self, doc, i, matches)
|
|
|
|
return matches
|
2015-10-08 15:00:45 +00:00
|
|
|
|
2016-02-03 01:04:55 +00:00
|
|
|
def pipe(self, stream, batch_size=1000, n_threads=2):
|
2017-10-25 10:10:16 +00:00
|
|
|
"""Match a stream of documents, yielding them in turn.
|
|
|
|
|
|
|
|
docs (iterable): A stream of documents.
|
2017-10-27 19:07:59 +00:00
|
|
|
batch_size (int): Number of documents to accumulate into a working set.
|
2017-10-25 10:10:16 +00:00
|
|
|
n_threads (int): The number of threads with which to work on the buffer
|
2017-10-27 19:07:59 +00:00
|
|
|
in parallel, if the implementation supports multi-threading.
|
2017-10-25 10:10:16 +00:00
|
|
|
YIELDS (Doc): Documents, in order.
|
|
|
|
"""
|
2016-02-03 01:04:55 +00:00
|
|
|
for doc in stream:
|
|
|
|
self(doc)
|
|
|
|
yield doc
|
|
|
|
|
2017-09-20 20:20:35 +00:00
|
|
|
def accept_match(self, Doc doc, int start, int end):
|
2018-04-03 13:50:31 +00:00
|
|
|
if (end - start) >= self.max_length:
|
|
|
|
raise ValueError(Errors.E075.format(length=end - start,
|
|
|
|
max_len=self.max_length))
|
2015-10-08 15:00:45 +00:00
|
|
|
cdef int i, j
|
|
|
|
for i in range(self.max_length):
|
|
|
|
self._phrase_key[i] = 0
|
|
|
|
for i, j in enumerate(range(start, end)):
|
2015-11-03 13:15:14 +00:00
|
|
|
self._phrase_key[i] = doc.c[j].lex.orth
|
2017-10-27 19:07:59 +00:00
|
|
|
cdef hash_t key = hash64(self._phrase_key,
|
|
|
|
self.max_length * sizeof(attr_t), 0)
|
2017-09-20 20:20:35 +00:00
|
|
|
ent_id = <hash_t>self.phrase_ids.get(key)
|
|
|
|
if ent_id == 0:
|
|
|
|
return None
|
2015-10-08 15:00:45 +00:00
|
|
|
else:
|
2017-09-20 20:20:35 +00:00
|
|
|
return ent_id
|
2018-09-27 11:27:18 +00:00
|
|
|
|
|
|
|
cdef class DependencyTreeMatcher:
|
|
|
|
"""Match dependency parse tree based on pattern rules."""
|
|
|
|
cdef Pool mem
|
|
|
|
cdef readonly Vocab vocab
|
|
|
|
cdef readonly Matcher token_matcher
|
|
|
|
cdef public object _patterns
|
|
|
|
cdef public object _keys_to_token
|
|
|
|
cdef public object _root
|
|
|
|
cdef public object _entities
|
|
|
|
cdef public object _callbacks
|
|
|
|
cdef public object _nodes
|
|
|
|
cdef public object _tree
|
|
|
|
|
|
|
|
def __init__(self, vocab):
|
|
|
|
"""Create the DependencyTreeMatcher.
|
|
|
|
|
|
|
|
vocab (Vocab): The vocabulary object, which must be shared with the
|
|
|
|
documents the matcher will operate on.
|
|
|
|
RETURNS (DependencyTreeMatcher): The newly constructed object.
|
|
|
|
"""
|
|
|
|
size = 20
|
|
|
|
self.token_matcher = Matcher(vocab)
|
|
|
|
self._keys_to_token = {}
|
|
|
|
self._patterns = {}
|
|
|
|
self._root = {}
|
|
|
|
self._nodes = {}
|
|
|
|
self._tree = {}
|
|
|
|
self._entities = {}
|
|
|
|
self._callbacks = {}
|
|
|
|
self.vocab = vocab
|
|
|
|
self.mem = Pool()
|
|
|
|
|
|
|
|
def __reduce__(self):
|
|
|
|
data = (self.vocab, self._patterns,self._tree, self._callbacks)
|
|
|
|
return (unpickle_matcher, data, None, None)
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
"""Get the number of rules, which are edges ,added to the dependency tree matcher.
|
|
|
|
|
|
|
|
RETURNS (int): The number of rules.
|
|
|
|
"""
|
|
|
|
return len(self._patterns)
|
|
|
|
|
|
|
|
def __contains__(self, key):
|
|
|
|
"""Check whether the matcher contains rules for a match ID.
|
|
|
|
|
|
|
|
key (unicode): The match ID.
|
|
|
|
RETURNS (bool): Whether the matcher contains rules for this match ID.
|
|
|
|
"""
|
|
|
|
return self._normalize_key(key) in self._patterns
|
|
|
|
|
|
|
|
|
|
|
|
def add(self, key, on_match, *patterns):
|
|
|
|
|
|
|
|
# TODO : validations
|
|
|
|
# 1. check if input pattern is connected
|
|
|
|
# 2. check if pattern format is correct
|
|
|
|
# 3. check if atleast one root node is present
|
|
|
|
# 4. check if node names are not repeated
|
|
|
|
# 5. check if each node has only one head
|
|
|
|
|
|
|
|
for pattern in patterns:
|
|
|
|
if len(pattern) == 0:
|
|
|
|
raise ValueError(Errors.E012.format(key=key))
|
|
|
|
|
|
|
|
key = self._normalize_key(key)
|
|
|
|
|
|
|
|
_patterns = []
|
|
|
|
for pattern in patterns:
|
|
|
|
token_patterns = []
|
|
|
|
for i in range(len(pattern)):
|
|
|
|
token_pattern = [pattern[i]['PATTERN']]
|
|
|
|
token_patterns.append(token_pattern)
|
|
|
|
# self.patterns.append(token_patterns)
|
|
|
|
_patterns.append(token_patterns)
|
|
|
|
|
|
|
|
self._patterns.setdefault(key, [])
|
|
|
|
self._callbacks[key] = on_match
|
|
|
|
self._patterns[key].extend(_patterns)
|
|
|
|
|
|
|
|
# Add each node pattern of all the input patterns individually to the matcher.
|
|
|
|
# This enables only a single instance of Matcher to be used.
|
|
|
|
# Multiple adds are required to track each node pattern.
|
|
|
|
_keys_to_token_list = []
|
|
|
|
for i in range(len(_patterns)):
|
|
|
|
_keys_to_token = {}
|
|
|
|
# TODO : Better ways to hash edges in pattern?
|
|
|
|
for j in range(len(_patterns[i])):
|
|
|
|
k = self._normalize_key(unicode(key)+DELIMITER+unicode(i)+DELIMITER+unicode(j))
|
|
|
|
self.token_matcher.add(k,None,_patterns[i][j])
|
|
|
|
_keys_to_token[k] = j
|
|
|
|
_keys_to_token_list.append(_keys_to_token)
|
|
|
|
|
|
|
|
self._keys_to_token.setdefault(key, [])
|
|
|
|
self._keys_to_token[key].extend(_keys_to_token_list)
|
|
|
|
|
|
|
|
_nodes_list = []
|
|
|
|
for pattern in patterns:
|
|
|
|
nodes = {}
|
|
|
|
for i in range(len(pattern)):
|
|
|
|
nodes[pattern[i]['SPEC']['NODE_NAME']]=i
|
|
|
|
_nodes_list.append(nodes)
|
|
|
|
|
|
|
|
self._nodes.setdefault(key, [])
|
|
|
|
self._nodes[key].extend(_nodes_list)
|
|
|
|
|
|
|
|
# Create an object tree to traverse later on.
|
|
|
|
# This datastructure enable easy tree pattern match.
|
|
|
|
# Doc-Token based tree cannot be reused since it is memory heavy and tightly coupled with doc
|
|
|
|
self.retrieve_tree(patterns,_nodes_list,key)
|
|
|
|
|
|
|
|
def retrieve_tree(self,patterns,_nodes_list,key):
|
|
|
|
|
|
|
|
_heads_list = []
|
|
|
|
_root_list = []
|
|
|
|
for i in range(len(patterns)):
|
|
|
|
heads = {}
|
|
|
|
root = -1
|
|
|
|
for j in range(len(patterns[i])):
|
|
|
|
token_pattern = patterns[i][j]
|
|
|
|
if('NBOR_RELOP' not in token_pattern['SPEC']):
|
|
|
|
heads[j] = j
|
|
|
|
root = j
|
|
|
|
else:
|
|
|
|
# TODO: Add semgrex rules
|
|
|
|
# 1. >
|
|
|
|
if(token_pattern['SPEC']['NBOR_RELOP'] == '>'):
|
|
|
|
heads[j] = _nodes_list[i][token_pattern['SPEC']['NBOR_NAME']]
|
|
|
|
# 2. <
|
|
|
|
if(token_pattern['SPEC']['NBOR_RELOP'] == '<'):
|
|
|
|
heads[_nodes_list[i][token_pattern['SPEC']['NBOR_NAME']]] = j
|
|
|
|
|
|
|
|
_heads_list.append(heads)
|
|
|
|
_root_list.append(root)
|
|
|
|
|
|
|
|
_tree_list = []
|
|
|
|
for i in range(len(patterns)):
|
|
|
|
tree = {}
|
|
|
|
for j in range(len(patterns[i])):
|
|
|
|
if(j == _heads_list[i][j]):
|
|
|
|
continue
|
|
|
|
head = _heads_list[i][j]
|
|
|
|
if(head not in tree):
|
|
|
|
tree[head] = []
|
|
|
|
tree[head].append(j)
|
|
|
|
_tree_list.append(tree)
|
|
|
|
|
|
|
|
self._tree.setdefault(key, [])
|
|
|
|
self._tree[key].extend(_tree_list)
|
|
|
|
|
|
|
|
self._root.setdefault(key, [])
|
|
|
|
self._root[key].extend(_root_list)
|
|
|
|
|
|
|
|
def has_key(self, key):
|
|
|
|
"""Check whether the matcher has a rule with a given key.
|
|
|
|
|
|
|
|
key (string or int): The key to check.
|
|
|
|
RETURNS (bool): Whether the matcher has the rule.
|
|
|
|
"""
|
|
|
|
key = self._normalize_key(key)
|
|
|
|
return key in self._patterns
|
|
|
|
|
|
|
|
def get(self, key, default=None):
|
|
|
|
"""Retrieve the pattern stored for a key.
|
|
|
|
|
|
|
|
key (unicode or int): The key to retrieve.
|
|
|
|
RETURNS (tuple): The rule, as an (on_match, patterns) tuple.
|
|
|
|
"""
|
|
|
|
key = self._normalize_key(key)
|
|
|
|
if key not in self._patterns:
|
|
|
|
return default
|
|
|
|
return (self._callbacks[key], self._patterns[key])
|
|
|
|
|
|
|
|
def __call__(self, Doc doc):
|
|
|
|
matched_trees = []
|
|
|
|
|
|
|
|
matches = self.token_matcher(doc)
|
|
|
|
for key in list(self._patterns.keys()):
|
|
|
|
_patterns_list = self._patterns[key]
|
|
|
|
_keys_to_token_list = self._keys_to_token[key]
|
|
|
|
_root_list = self._root[key]
|
|
|
|
_tree_list = self._tree[key]
|
|
|
|
_nodes_list = self._nodes[key]
|
|
|
|
length = len(_patterns_list)
|
|
|
|
for i in range(length):
|
|
|
|
_keys_to_token = _keys_to_token_list[i]
|
|
|
|
_root = _root_list[i]
|
|
|
|
_tree = _tree_list[i]
|
|
|
|
_nodes = _nodes_list[i]
|
|
|
|
|
|
|
|
id_to_position = {}
|
|
|
|
|
|
|
|
# This could be taken outside to improve running time..?
|
|
|
|
for match_id, start, end in matches:
|
|
|
|
if match_id in _keys_to_token:
|
|
|
|
if _keys_to_token[match_id] not in id_to_position:
|
|
|
|
id_to_position[_keys_to_token[match_id]] = []
|
|
|
|
id_to_position[_keys_to_token[match_id]].append(start)
|
|
|
|
|
|
|
|
length = len(_nodes)
|
|
|
|
if _root in id_to_position:
|
|
|
|
candidates = id_to_position[_root]
|
|
|
|
for candidate in candidates:
|
|
|
|
isVisited = {}
|
|
|
|
self.dfs(candidate,_root,_tree,id_to_position,doc,isVisited)
|
|
|
|
# to check if the subtree pattern is completely identified
|
|
|
|
if(len(isVisited) == length):
|
|
|
|
matched_trees.append((key,list(isVisited)))
|
|
|
|
|
|
|
|
for i, (ent_id, nodes) in enumerate(matched_trees):
|
|
|
|
on_match = self._callbacks.get(ent_id)
|
|
|
|
if on_match is not None:
|
|
|
|
on_match(self, doc, i, matches)
|
|
|
|
|
|
|
|
return matched_trees
|
|
|
|
|
|
|
|
def dfs(self,candidate,root,tree,id_to_position,doc,isVisited):
|
|
|
|
if(root in id_to_position and candidate in id_to_position[root]):
|
|
|
|
# color the node since it is valid
|
|
|
|
isVisited[candidate] = True
|
|
|
|
candidate_children = doc[candidate].children
|
|
|
|
for candidate_child in candidate_children:
|
|
|
|
if root in tree:
|
|
|
|
for root_child in tree[root]:
|
|
|
|
self.dfs(candidate_child.i,root_child,tree,id_to_position,doc,isVisited)
|
|
|
|
|
|
|
|
|
|
|
|
def _normalize_key(self, key):
|
|
|
|
if isinstance(key, basestring):
|
|
|
|
return self.vocab.strings.add(key)
|
|
|
|
else:
|
|
|
|
return key
|