spaCy/spacy/matcher.pyx

471 lines
16 KiB
Cython
Raw Normal View History

2015-10-08 15:00:45 +00:00
# cython: profile=True
# cython: infer_types=True
# coding: utf8
2015-10-08 15:00:45 +00:00
from __future__ import unicode_literals
2017-04-15 10:13:34 +00:00
import ujson
from .typedefs cimport attr_t
2015-10-08 15:00:45 +00:00
from .typedefs cimport hash_t
from .attrs cimport attr_id_t
2017-03-21 20:08:54 +00:00
from .structs cimport TokenC
from cymem.cymem cimport Pool
2015-10-08 15:00:45 +00:00
from preshed.maps cimport PreshMap
from libcpp.vector cimport vector
from libcpp.pair cimport pair
2015-10-08 15:00:45 +00:00
from murmurhash.mrmr cimport hash64
from libc.stdint cimport int32_t
2017-03-21 20:08:54 +00:00
from .attrs cimport ID, ENT_TYPE
from . import attrs
from .tokens.doc cimport get_token_attr
from .tokens.doc cimport Doc
from .vocab cimport Vocab
2015-10-08 15:00:45 +00:00
from .attrs import FLAG61 as U_ENT
from .attrs import FLAG60 as B2_ENT
from .attrs import FLAG59 as B3_ENT
from .attrs import FLAG58 as B4_ENT
from .attrs import FLAG57 as B5_ENT
from .attrs import FLAG56 as B6_ENT
from .attrs import FLAG55 as B7_ENT
from .attrs import FLAG54 as B8_ENT
from .attrs import FLAG53 as B9_ENT
from .attrs import FLAG52 as B10_ENT
from .attrs import FLAG51 as I3_ENT
from .attrs import FLAG50 as I4_ENT
from .attrs import FLAG49 as I5_ENT
from .attrs import FLAG48 as I6_ENT
from .attrs import FLAG47 as I7_ENT
from .attrs import FLAG46 as I8_ENT
from .attrs import FLAG45 as I9_ENT
from .attrs import FLAG44 as I10_ENT
from .attrs import FLAG43 as L2_ENT
from .attrs import FLAG42 as L3_ENT
from .attrs import FLAG41 as L4_ENT
from .attrs import FLAG40 as L5_ENT
from .attrs import FLAG39 as L6_ENT
from .attrs import FLAG38 as L7_ENT
from .attrs import FLAG37 as L8_ENT
from .attrs import FLAG36 as L9_ENT
from .attrs import FLAG35 as L10_ENT
cpdef enum quantifier_t:
_META
ONE
ZERO
ZERO_ONE
ZERO_PLUS
cdef enum action_t:
REJECT
ADVANCE
REPEAT
ACCEPT
ADVANCE_ZERO
PANIC
cdef struct AttrValueC:
attr_id_t attr
attr_t value
cdef struct TokenPatternC:
AttrValueC* attrs
int32_t nr_attr
quantifier_t quantifier
ctypedef TokenPatternC* TokenPatternC_ptr
ctypedef pair[int, TokenPatternC_ptr] StateC
2017-05-20 11:54:53 +00:00
cdef TokenPatternC* init_pattern(Pool mem, attr_t entity_id,
object token_specs) except NULL:
pattern = <TokenPatternC*>mem.alloc(len(token_specs) + 1, sizeof(TokenPatternC))
cdef int i
for i, (quantifier, spec) in enumerate(token_specs):
pattern[i].quantifier = quantifier
pattern[i].attrs = <AttrValueC*>mem.alloc(len(spec), sizeof(AttrValueC))
pattern[i].nr_attr = len(spec)
for j, (attr, value) in enumerate(spec):
pattern[i].attrs[j].attr = attr
pattern[i].attrs[j].value = value
i = len(token_specs)
2017-05-20 11:54:53 +00:00
pattern[i].attrs = <AttrValueC*>mem.alloc(2, sizeof(AttrValueC))
pattern[i].attrs[0].attr = ID
pattern[i].attrs[0].value = entity_id
pattern[i].nr_attr = 0
return pattern
2017-05-20 11:54:53 +00:00
cdef attr_t get_pattern_key(const TokenPatternC* pattern) except 0:
while pattern.nr_attr != 0:
pattern += 1
id_attr = pattern[0].attrs[0]
assert id_attr.attr == ID
return id_attr.value
cdef int get_action(const TokenPatternC* pattern, const TokenC* token) nogil:
for attr in pattern.attrs[:pattern.nr_attr]:
if get_token_attr(token, attr.attr) != attr.value:
if pattern.quantifier == ONE:
return REJECT
elif pattern.quantifier == ZERO:
return ACCEPT if (pattern+1).nr_attr == 0 else ADVANCE
elif pattern.quantifier in (ZERO_ONE, ZERO_PLUS):
return ACCEPT if (pattern+1).nr_attr == 0 else ADVANCE_ZERO
else:
return PANIC
if pattern.quantifier == ZERO:
return REJECT
elif pattern.quantifier in (ONE, ZERO_ONE):
return ACCEPT if (pattern+1).nr_attr == 0 else ADVANCE
elif pattern.quantifier == ZERO_PLUS:
return REPEAT
else:
return PANIC
2015-08-06 12:33:21 +00:00
def _convert_strings(token_specs, string_store):
# Support 'syntactic sugar' operator '+', as combination of ONE, ZERO_PLUS
operators = {'!': (ZERO,), '*': (ZERO_PLUS,), '+': (ONE, ZERO_PLUS),
'?': (ZERO_ONE,), '1': (ONE,)}
tokens = []
op = ONE
2015-08-06 12:33:21 +00:00
for spec in token_specs:
token = []
ops = (ONE,)
2015-08-06 12:33:21 +00:00
for attr, value in spec.items():
if isinstance(attr, basestring) and attr.upper() == 'OP':
if value in operators:
ops = operators[value]
else:
raise KeyError(
"Unknown operator '%s'. Options: %s" % (value, ', '.join(operators.keys())))
2015-08-06 12:33:21 +00:00
if isinstance(attr, basestring):
attr = attrs.IDS.get(attr.upper())
2015-08-06 12:33:21 +00:00
if isinstance(value, basestring):
value = string_store[value]
if isinstance(value, bool):
value = int(value)
if attr is not None:
token.append((attr, value))
for op in ops:
tokens.append((op, token))
return tokens
2015-10-08 15:00:45 +00:00
def merge_phrase(matcher, doc, i, matches):
2017-05-19 19:47:06 +00:00
"""Callback to merge a phrase on match."""
ent_id, label, start, end = matches[i]
span = doc[start : end]
span.merge(ent_type=label, ent_id=ent_id)
cdef class Matcher:
2017-05-19 19:47:06 +00:00
"""Match sequences of tokens, based on pattern rules."""
cdef Pool mem
cdef vector[TokenPatternC*] patterns
cdef readonly Vocab vocab
2016-09-24 09:20:42 +00:00
cdef public object _patterns
cdef public object _entities
cdef public object _callbacks
cdef public object _acceptors
2017-05-20 11:54:53 +00:00
def __init__(self, vocab):
2017-05-19 19:47:06 +00:00
"""Create the Matcher.
vocab (Vocab): The vocabulary object, which must be shared with the
documents the matcher will operate on.
RETURNS (Matcher): The newly constructed object.
2016-11-01 11:25:36 +00:00
"""
self._patterns = {}
self._entities = {}
self._acceptors = {}
self._callbacks = {}
self.vocab = vocab
self.mem = Pool()
def __reduce__(self):
return (self.__class__, (self.vocab, self._patterns), None, None)
2017-05-20 11:54:53 +00:00
def __len__(self):
return len(self._patterns)
def __contains__(self, key):
return len(self._patterns)
def add(self, key, on_match, *patterns):
"""Add a match-rule to the matcher.
2017-05-20 12:05:07 +00:00
A match-rule consists of: an ID key, an on_match callback, and one or
more patterns. If the key exists, the patterns are appended to the
previous ones, and the previous on_match callback is replaced. The
`on_match` callback will receive the arguments `(matcher, doc, i, matches)`.
Note that if no `on_match` callback is specified, the document will not
be modified. A pattern consists of one or more `token_specs`, where a
`token_spec` is a dictionary mapping attribute IDs to values. Token
descriptors can also include quantifiers. There are currently important
known problems with the quantifiers see the docs.
2016-11-01 11:25:36 +00:00
"""
2017-05-20 11:54:53 +00:00
for pattern in patterns:
if len(pattern) == 0:
msg = ("Cannot add pattern for zero tokens to matcher.\n"
"key: {key}\n")
raise ValueError(msg.format(key=key))
key = self._normalize_key(key)
self._patterns.setdefault(key, [])
self._callbacks[key] = on_match
for pattern in patterns:
specs = _convert_strings(pattern, self.vocab.strings)
self.patterns.push_back(init_pattern(self.mem, key, specs))
self._patterns[key].append(specs)
def remove(self, key):
"""Remove a rule from the matcher.
A KeyError is raised if the key does not exist.
2016-11-01 11:25:36 +00:00
"""
2017-05-20 11:54:53 +00:00
key = self._normalize_key(key)
self._patterns.pop(key)
self._callbacks.pop(key)
cdef int i = 0
while i < self.patterns.size():
pattern_key = get_pattern_key(self.patterns.at(i))
if pattern_key == key:
self.patterns.erase(self.patterns.begin()+i)
else:
i += 1
2017-05-20 11:54:53 +00:00
def has_key(self, key):
"""Check whether the matcher has a rule with a given key.
2016-11-01 11:25:36 +00:00
2017-05-20 11:54:53 +00:00
key (string or int): The key to check.
RETURNS (bool): Whether the matcher has the rule.
2016-11-01 11:25:36 +00:00
"""
2017-05-20 11:54:53 +00:00
key = self._normalize_key(key)
return key in self._patterns
2017-05-20 11:54:53 +00:00
def get(self, key, default=None):
"""Retrieve the pattern stored for an entity.
2016-11-01 11:25:36 +00:00
2017-05-20 11:54:53 +00:00
key (unicode or int): The key to retrieve.
RETURNS (tuple): The rule, as an (on_match, patterns) tuple.
2016-11-01 11:25:36 +00:00
"""
2017-05-20 11:54:53 +00:00
key = self._normalize_key(key)
if key not in self._patterns:
return default
return (self._callbacks[key], self._patterns[key])
def pipe(self, docs, batch_size=1000, n_threads=2):
"""Match a stream of documents, yielding them in turn.
docs (iterable): A stream of documents.
batch_size (int): The number of documents to accumulate into a working set.
n_threads (int): The number of threads with which to work on the buffer
in parallel, if the `Matcher` implementation supports multi-threading.
YIELDS (Doc): Documents, in order.
"""
for doc in docs:
self(doc)
yield doc
2017-05-20 11:54:53 +00:00
def __call__(self, Doc doc):
2017-05-19 19:47:06 +00:00
"""Find all token sequences matching the supplied patterns on the `Doc`.
doc (Doc): The document to match over.
2017-05-20 11:54:53 +00:00
RETURNS (list): A list of `(key, label_id, start, end)` tuples,
2017-05-19 19:47:06 +00:00
describing the matches. A match tuple describes a span
2017-05-20 11:54:53 +00:00
`doc[start:end]`. The `label_id` and `key` are both integers.
2016-11-01 11:25:36 +00:00
"""
cdef vector[StateC] partials
cdef int n_partials = 0
cdef int q = 0
cdef int i, token_i
cdef const TokenC* token
cdef StateC state
matches = []
for token_i in range(doc.length):
2015-11-03 13:15:14 +00:00
token = &doc.c[token_i]
q = 0
2015-10-08 15:00:45 +00:00
# Go over the open matches, extending or finalizing if able. Otherwise,
# we over-write them (q doesn't advance)
for state in partials:
action = get_action(state.second, token)
if action == PANIC:
raise Exception("Error selecting action in matcher")
while action == ADVANCE_ZERO:
state.second += 1
action = get_action(state.second, token)
if action == REPEAT:
# Leave the state in the queue, and advance to next slot
# (i.e. we don't overwrite -- we want to greedily match more
# pattern.
q += 1
elif action == REJECT:
pass
elif action == ADVANCE:
partials[q] = state
partials[q].second += 1
q += 1
elif action == ACCEPT:
# TODO: What to do about patterns starting with ZERO? Need to
# adjust the start position.
start = state.first
end = token_i+1
ent_id = state.second[1].attrs[0].value
label = state.second[1].attrs[1].value
2017-05-20 11:54:53 +00:00
matches.append((ent_id, start, end))
partials.resize(q)
2015-10-08 15:00:45 +00:00
# Check whether we open any new patterns on this token
for pattern in self.patterns:
action = get_action(pattern, token)
if action == PANIC:
raise Exception("Error selecting action in matcher")
while action == ADVANCE_ZERO:
pattern += 1
action = get_action(pattern, token)
if action == REPEAT:
state.first = token_i
state.second = pattern
partials.push_back(state)
elif action == ADVANCE:
# TODO: What to do about patterns starting with ZERO? Need to
# adjust the start position.
state.first = token_i
state.second = pattern + 1
partials.push_back(state)
elif action == ACCEPT:
start = token_i
end = token_i+1
ent_id = pattern[1].attrs[0].value
label = pattern[1].attrs[1].value
2017-05-20 11:54:53 +00:00
matches.append((ent_id, start, end))
# Look for open patterns that are actually satisfied
for state in partials:
while state.second.quantifier in (ZERO, ZERO_PLUS):
state.second += 1
if state.second.nr_attr == 0:
start = state.first
end = len(doc)
ent_id = state.second.attrs[0].value
label = state.second.attrs[0].value
2017-05-20 11:54:53 +00:00
matches.append((ent_id, start, end))
for i, (ent_id, label, start, end) in enumerate(matches):
on_match = self._callbacks.get(ent_id)
if on_match is not None:
on_match(self, doc, i, matches)
2017-05-19 23:38:04 +00:00
# TODO: only return (match_id, start, end)
return matches
2015-10-08 15:00:45 +00:00
2017-05-20 11:54:53 +00:00
def _normalize_key(self, key):
if isinstance(key, basestring):
return self.vocab.strings[key]
else:
return key
2015-10-08 15:00:45 +00:00
def get_bilou(length):
if length == 1:
return [U_ENT]
elif length == 2:
return [B2_ENT, L2_ENT]
elif length == 3:
return [B3_ENT, I3_ENT, L3_ENT]
elif length == 4:
return [B4_ENT, I4_ENT, I4_ENT, L4_ENT]
elif length == 5:
return [B5_ENT, I5_ENT, I5_ENT, I5_ENT, L5_ENT]
elif length == 6:
return [B6_ENT, I6_ENT, I6_ENT, I6_ENT, I6_ENT, L6_ENT]
elif length == 7:
return [B7_ENT, I7_ENT, I7_ENT, I7_ENT, I7_ENT, I7_ENT, L7_ENT]
elif length == 8:
return [B8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, I8_ENT, L8_ENT]
elif length == 9:
return [B9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, I9_ENT, L9_ENT]
elif length == 10:
return [B10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT, I10_ENT,
I10_ENT, I10_ENT, L10_ENT]
else:
raise ValueError("Max length currently 10 for phrase matching")
2015-10-08 15:00:45 +00:00
cdef class PhraseMatcher:
cdef Pool mem
cdef Vocab vocab
cdef Matcher matcher
cdef PreshMap phrase_ids
cdef int max_length
cdef attr_t* _phrase_key
def __init__(self, Vocab vocab, phrases, max_length=10):
self.mem = Pool()
self._phrase_key = <attr_t*>self.mem.alloc(max_length, sizeof(attr_t))
self.max_length = max_length
self.vocab = vocab
self.matcher = Matcher(self.vocab, {})
self.phrase_ids = PreshMap()
for phrase in phrases:
if len(phrase) < max_length:
self.add(phrase)
abstract_patterns = []
for length in range(1, max_length):
abstract_patterns.append([{tag: True} for tag in get_bilou(length)])
self.matcher.add('Candidate', 'MWE', {}, abstract_patterns, acceptor=self.accept_match)
2015-10-08 15:00:45 +00:00
def add(self, Doc tokens):
cdef int length = tokens.length
assert length < self.max_length
tags = get_bilou(length)
assert len(tags) == length, length
2015-10-08 15:00:45 +00:00
cdef int i
for i in range(self.max_length):
self._phrase_key[i] = 0
for i, tag in enumerate(tags):
2015-11-03 13:15:14 +00:00
lexeme = self.vocab[tokens.c[i].lex.orth]
2015-10-08 15:00:45 +00:00
lexeme.set_flag(tag, True)
self._phrase_key[i] = lexeme.orth
cdef hash_t key = hash64(self._phrase_key, self.max_length * sizeof(attr_t), 0)
self.phrase_ids[key] = True
def __call__(self, Doc doc):
matches = []
for ent_id, label, start, end in self.matcher(doc):
2015-10-08 15:00:45 +00:00
cand = doc[start : end]
start = cand[0].idx
end = cand[-1].idx + len(cand[-1])
matches.append((start, end, cand.root.tag_, cand.text, 'MWE'))
for match in matches:
doc.merge(*match)
return matches
def pipe(self, stream, batch_size=1000, n_threads=2):
for doc in stream:
self(doc)
yield doc
def accept_match(self, Doc doc, int ent_id, int label, int start, int end):
2015-10-08 15:00:45 +00:00
assert (end - start) < self.max_length
cdef int i, j
for i in range(self.max_length):
self._phrase_key[i] = 0
for i, j in enumerate(range(start, end)):
2015-11-03 13:15:14 +00:00
self._phrase_key[i] = doc.c[j].lex.orth
2015-10-08 15:00:45 +00:00
cdef hash_t key = hash64(self._phrase_key, self.max_length * sizeof(attr_t), 0)
if self.phrase_ids.get(key):
return (ent_id, label, start, end)
2015-10-08 15:00:45 +00:00
else:
return False