mirror of https://github.com/explosion/spaCy.git
Set up dependency tree pattern matching skeleton (#2732)
This commit is contained in:
parent
8809dc4514
commit
bbdc6456c6
|
@ -48,6 +48,7 @@ from .attrs import FLAG37 as L8_ENT
|
|||
from .attrs import FLAG36 as L9_ENT
|
||||
from .attrs import FLAG35 as L10_ENT
|
||||
|
||||
DELIMITER = '||'
|
||||
|
||||
cpdef enum quantifier_t:
|
||||
_META
|
||||
|
@ -66,7 +67,7 @@ cdef enum action_t:
|
|||
ACCEPT_PREV
|
||||
PANIC
|
||||
|
||||
# A "match expression" conists of one or more token patterns
|
||||
# A "match expression" consists of one or more token patterns
|
||||
# Each token pattern consists of a quantifier and 0+ (attr, value) pairs.
|
||||
# A state is an (int, pattern pointer) pair, where the int is the start
|
||||
# position, and the pattern pointer shows where we're up to
|
||||
|
@ -76,16 +77,16 @@ cdef struct AttrValueC:
|
|||
attr_id_t attr
|
||||
attr_t value
|
||||
|
||||
|
||||
cdef struct TokenPatternC:
|
||||
AttrValueC* attrs
|
||||
int32_t nr_attr
|
||||
quantifier_t quantifier
|
||||
|
||||
|
||||
ctypedef TokenPatternC* TokenPatternC_ptr
|
||||
ctypedef pair[int, TokenPatternC_ptr] StateC
|
||||
|
||||
DEF PADDING = 5
|
||||
|
||||
|
||||
cdef TokenPatternC* init_pattern(Pool mem, attr_t entity_id,
|
||||
object token_specs) except NULL:
|
||||
|
@ -105,7 +106,6 @@ cdef TokenPatternC* init_pattern(Pool mem, attr_t entity_id,
|
|||
pattern[i].nr_attr = 0
|
||||
return pattern
|
||||
|
||||
|
||||
cdef attr_t get_pattern_key(const TokenPatternC* pattern) except 0:
|
||||
while pattern.nr_attr != 0:
|
||||
pattern += 1
|
||||
|
@ -262,7 +262,7 @@ cdef class Matcher:
|
|||
|
||||
key (unicode): The match ID.
|
||||
on_match (callable): Callback executed on match.
|
||||
*patterns (list): List of token descritions.
|
||||
*patterns (list): List of token descriptions.
|
||||
"""
|
||||
for pattern in patterns:
|
||||
if len(pattern) == 0:
|
||||
|
@ -526,6 +526,7 @@ cdef class PhraseMatcher:
|
|||
self.phrase_ids.set(phrase_hash, <void*>ent_id)
|
||||
|
||||
def __call__(self, Doc doc):
|
||||
|
||||
"""Find all sequences matching the supplied patterns on the `Doc`.
|
||||
|
||||
doc (Doc): The document to match over.
|
||||
|
@ -573,3 +574,236 @@ cdef class PhraseMatcher:
|
|||
return None
|
||||
else:
|
||||
return ent_id
|
||||
|
||||
cdef class DependencyTreeMatcher:
|
||||
"""Match dependency parse tree based on pattern rules."""
|
||||
cdef Pool mem
|
||||
cdef readonly Vocab vocab
|
||||
cdef readonly Matcher token_matcher
|
||||
cdef public object _patterns
|
||||
cdef public object _keys_to_token
|
||||
cdef public object _root
|
||||
cdef public object _entities
|
||||
cdef public object _callbacks
|
||||
cdef public object _nodes
|
||||
cdef public object _tree
|
||||
|
||||
def __init__(self, vocab):
|
||||
"""Create the DependencyTreeMatcher.
|
||||
|
||||
vocab (Vocab): The vocabulary object, which must be shared with the
|
||||
documents the matcher will operate on.
|
||||
RETURNS (DependencyTreeMatcher): The newly constructed object.
|
||||
"""
|
||||
size = 20
|
||||
self.token_matcher = Matcher(vocab)
|
||||
self._keys_to_token = {}
|
||||
self._patterns = {}
|
||||
self._root = {}
|
||||
self._nodes = {}
|
||||
self._tree = {}
|
||||
self._entities = {}
|
||||
self._callbacks = {}
|
||||
self.vocab = vocab
|
||||
self.mem = Pool()
|
||||
|
||||
def __reduce__(self):
|
||||
data = (self.vocab, self._patterns,self._tree, self._callbacks)
|
||||
return (unpickle_matcher, data, None, None)
|
||||
|
||||
def __len__(self):
|
||||
"""Get the number of rules, which are edges ,added to the dependency tree matcher.
|
||||
|
||||
RETURNS (int): The number of rules.
|
||||
"""
|
||||
return len(self._patterns)
|
||||
|
||||
def __contains__(self, key):
|
||||
"""Check whether the matcher contains rules for a match ID.
|
||||
|
||||
key (unicode): The match ID.
|
||||
RETURNS (bool): Whether the matcher contains rules for this match ID.
|
||||
"""
|
||||
return self._normalize_key(key) in self._patterns
|
||||
|
||||
|
||||
def add(self, key, on_match, *patterns):
|
||||
|
||||
# TODO : validations
|
||||
# 1. check if input pattern is connected
|
||||
# 2. check if pattern format is correct
|
||||
# 3. check if atleast one root node is present
|
||||
# 4. check if node names are not repeated
|
||||
# 5. check if each node has only one head
|
||||
|
||||
for pattern in patterns:
|
||||
if len(pattern) == 0:
|
||||
raise ValueError(Errors.E012.format(key=key))
|
||||
|
||||
key = self._normalize_key(key)
|
||||
|
||||
_patterns = []
|
||||
for pattern in patterns:
|
||||
token_patterns = []
|
||||
for i in range(len(pattern)):
|
||||
token_pattern = [pattern[i]['PATTERN']]
|
||||
token_patterns.append(token_pattern)
|
||||
# self.patterns.append(token_patterns)
|
||||
_patterns.append(token_patterns)
|
||||
|
||||
self._patterns.setdefault(key, [])
|
||||
self._callbacks[key] = on_match
|
||||
self._patterns[key].extend(_patterns)
|
||||
|
||||
# Add each node pattern of all the input patterns individually to the matcher.
|
||||
# This enables only a single instance of Matcher to be used.
|
||||
# Multiple adds are required to track each node pattern.
|
||||
_keys_to_token_list = []
|
||||
for i in range(len(_patterns)):
|
||||
_keys_to_token = {}
|
||||
# TODO : Better ways to hash edges in pattern?
|
||||
for j in range(len(_patterns[i])):
|
||||
k = self._normalize_key(unicode(key)+DELIMITER+unicode(i)+DELIMITER+unicode(j))
|
||||
self.token_matcher.add(k,None,_patterns[i][j])
|
||||
_keys_to_token[k] = j
|
||||
_keys_to_token_list.append(_keys_to_token)
|
||||
|
||||
self._keys_to_token.setdefault(key, [])
|
||||
self._keys_to_token[key].extend(_keys_to_token_list)
|
||||
|
||||
_nodes_list = []
|
||||
for pattern in patterns:
|
||||
nodes = {}
|
||||
for i in range(len(pattern)):
|
||||
nodes[pattern[i]['SPEC']['NODE_NAME']]=i
|
||||
_nodes_list.append(nodes)
|
||||
|
||||
self._nodes.setdefault(key, [])
|
||||
self._nodes[key].extend(_nodes_list)
|
||||
|
||||
# Create an object tree to traverse later on.
|
||||
# This datastructure enable easy tree pattern match.
|
||||
# Doc-Token based tree cannot be reused since it is memory heavy and tightly coupled with doc
|
||||
self.retrieve_tree(patterns,_nodes_list,key)
|
||||
|
||||
def retrieve_tree(self,patterns,_nodes_list,key):
|
||||
|
||||
_heads_list = []
|
||||
_root_list = []
|
||||
for i in range(len(patterns)):
|
||||
heads = {}
|
||||
root = -1
|
||||
for j in range(len(patterns[i])):
|
||||
token_pattern = patterns[i][j]
|
||||
if('NBOR_RELOP' not in token_pattern['SPEC']):
|
||||
heads[j] = j
|
||||
root = j
|
||||
else:
|
||||
# TODO: Add semgrex rules
|
||||
# 1. >
|
||||
if(token_pattern['SPEC']['NBOR_RELOP'] == '>'):
|
||||
heads[j] = _nodes_list[i][token_pattern['SPEC']['NBOR_NAME']]
|
||||
# 2. <
|
||||
if(token_pattern['SPEC']['NBOR_RELOP'] == '<'):
|
||||
heads[_nodes_list[i][token_pattern['SPEC']['NBOR_NAME']]] = j
|
||||
|
||||
_heads_list.append(heads)
|
||||
_root_list.append(root)
|
||||
|
||||
_tree_list = []
|
||||
for i in range(len(patterns)):
|
||||
tree = {}
|
||||
for j in range(len(patterns[i])):
|
||||
if(j == _heads_list[i][j]):
|
||||
continue
|
||||
head = _heads_list[i][j]
|
||||
if(head not in tree):
|
||||
tree[head] = []
|
||||
tree[head].append(j)
|
||||
_tree_list.append(tree)
|
||||
|
||||
self._tree.setdefault(key, [])
|
||||
self._tree[key].extend(_tree_list)
|
||||
|
||||
self._root.setdefault(key, [])
|
||||
self._root[key].extend(_root_list)
|
||||
|
||||
def has_key(self, key):
|
||||
"""Check whether the matcher has a rule with a given key.
|
||||
|
||||
key (string or int): The key to check.
|
||||
RETURNS (bool): Whether the matcher has the rule.
|
||||
"""
|
||||
key = self._normalize_key(key)
|
||||
return key in self._patterns
|
||||
|
||||
def get(self, key, default=None):
|
||||
"""Retrieve the pattern stored for a key.
|
||||
|
||||
key (unicode or int): The key to retrieve.
|
||||
RETURNS (tuple): The rule, as an (on_match, patterns) tuple.
|
||||
"""
|
||||
key = self._normalize_key(key)
|
||||
if key not in self._patterns:
|
||||
return default
|
||||
return (self._callbacks[key], self._patterns[key])
|
||||
|
||||
def __call__(self, Doc doc):
|
||||
matched_trees = []
|
||||
|
||||
matches = self.token_matcher(doc)
|
||||
for key in list(self._patterns.keys()):
|
||||
_patterns_list = self._patterns[key]
|
||||
_keys_to_token_list = self._keys_to_token[key]
|
||||
_root_list = self._root[key]
|
||||
_tree_list = self._tree[key]
|
||||
_nodes_list = self._nodes[key]
|
||||
length = len(_patterns_list)
|
||||
for i in range(length):
|
||||
_keys_to_token = _keys_to_token_list[i]
|
||||
_root = _root_list[i]
|
||||
_tree = _tree_list[i]
|
||||
_nodes = _nodes_list[i]
|
||||
|
||||
id_to_position = {}
|
||||
|
||||
# This could be taken outside to improve running time..?
|
||||
for match_id, start, end in matches:
|
||||
if match_id in _keys_to_token:
|
||||
if _keys_to_token[match_id] not in id_to_position:
|
||||
id_to_position[_keys_to_token[match_id]] = []
|
||||
id_to_position[_keys_to_token[match_id]].append(start)
|
||||
|
||||
length = len(_nodes)
|
||||
if _root in id_to_position:
|
||||
candidates = id_to_position[_root]
|
||||
for candidate in candidates:
|
||||
isVisited = {}
|
||||
self.dfs(candidate,_root,_tree,id_to_position,doc,isVisited)
|
||||
# to check if the subtree pattern is completely identified
|
||||
if(len(isVisited) == length):
|
||||
matched_trees.append((key,list(isVisited)))
|
||||
|
||||
for i, (ent_id, nodes) in enumerate(matched_trees):
|
||||
on_match = self._callbacks.get(ent_id)
|
||||
if on_match is not None:
|
||||
on_match(self, doc, i, matches)
|
||||
|
||||
return matched_trees
|
||||
|
||||
def dfs(self,candidate,root,tree,id_to_position,doc,isVisited):
|
||||
if(root in id_to_position and candidate in id_to_position[root]):
|
||||
# color the node since it is valid
|
||||
isVisited[candidate] = True
|
||||
candidate_children = doc[candidate].children
|
||||
for candidate_child in candidate_children:
|
||||
if root in tree:
|
||||
for root_child in tree[root]:
|
||||
self.dfs(candidate_child.i,root_child,tree,id_to_position,doc,isVisited)
|
||||
|
||||
|
||||
def _normalize_key(self, key):
|
||||
if isinstance(key, basestring):
|
||||
return self.vocab.strings.add(key)
|
||||
else:
|
||||
return key
|
|
@ -1,12 +1,14 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from ..matcher import Matcher, PhraseMatcher
|
||||
from numpy import sort
|
||||
|
||||
from ..matcher import Matcher, PhraseMatcher, DependencyTreeMatcher
|
||||
from .util import get_doc
|
||||
from ..tokens import Doc
|
||||
|
||||
import pytest
|
||||
|
||||
import re
|
||||
|
||||
@pytest.fixture
|
||||
def matcher(en_vocab):
|
||||
|
@ -20,7 +22,6 @@ def matcher(en_vocab):
|
|||
matcher.add(key, None, *patterns)
|
||||
return matcher
|
||||
|
||||
|
||||
def test_matcher_from_api_docs(en_vocab):
|
||||
matcher = Matcher(en_vocab)
|
||||
pattern = [{'ORTH': 'test'}]
|
||||
|
@ -258,3 +259,47 @@ def test_matcher_end_zero_plus(matcher):
|
|||
assert len(matcher(nlp(u'a b c'))) == 1
|
||||
assert len(matcher(nlp(u'a b b c'))) == 1
|
||||
assert len(matcher(nlp(u'a b b'))) == 1
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def text():
|
||||
return u"The quick brown fox jumped over the lazy fox"
|
||||
|
||||
@pytest.fixture
|
||||
def heads():
|
||||
return [3,2,1,1,0,-1,2,1,-3]
|
||||
|
||||
@pytest.fixture
|
||||
def deps():
|
||||
return ['det', 'amod', 'amod', 'nsubj', 'prep', 'pobj', 'det', 'amod']
|
||||
|
||||
@pytest.fixture
|
||||
def dependency_tree_matcher(en_vocab):
|
||||
is_brown_yellow = lambda text: bool(re.compile(r'brown|yellow|over').match(text))
|
||||
IS_BROWN_YELLOW = en_vocab.add_flag(is_brown_yellow)
|
||||
pattern1 = [
|
||||
{'SPEC': {'NODE_NAME': 'fox'}, 'PATTERN': {'ORTH': 'fox'}},
|
||||
{'SPEC': {'NODE_NAME': 'q', 'NBOR_RELOP': '>', 'NBOR_NAME': 'fox'},'PATTERN': {'LOWER': u'quick'}},
|
||||
{'SPEC': {'NODE_NAME': 'r', 'NBOR_RELOP': '>', 'NBOR_NAME': 'fox'}, 'PATTERN': {IS_BROWN_YELLOW: True}}
|
||||
]
|
||||
|
||||
pattern2 = [
|
||||
{'SPEC': {'NODE_NAME': 'jumped'}, 'PATTERN': {'ORTH': 'jumped'}},
|
||||
{'SPEC': {'NODE_NAME': 'fox', 'NBOR_RELOP': '>', 'NBOR_NAME': 'jumped'},'PATTERN': {'LOWER': u'fox'}},
|
||||
{'SPEC': {'NODE_NAME': 'over', 'NBOR_RELOP': '>', 'NBOR_NAME': 'fox'}, 'PATTERN': {IS_BROWN_YELLOW: True}}
|
||||
]
|
||||
matcher = DependencyTreeMatcher(en_vocab)
|
||||
matcher.add('pattern1', None, pattern1)
|
||||
matcher.add('pattern2', None, pattern2)
|
||||
return matcher
|
||||
|
||||
|
||||
|
||||
def test_dependency_tree_matcher_compile(dependency_tree_matcher):
|
||||
assert len(dependency_tree_matcher) == 2
|
||||
|
||||
def test_dependency_tree_matcher(dependency_tree_matcher,text,heads,deps):
|
||||
doc = get_doc(dependency_tree_matcher.vocab,text.split(),heads=heads,deps=deps)
|
||||
matches = dependency_tree_matcher(doc)
|
||||
assert len(matches) == 2
|
||||
|
||||
|
|
Loading…
Reference in New Issue