spaCy/spacy/syntax/parser.pyx

219 lines
6.8 KiB
Cython
Raw Normal View History

2014-12-16 11:44:43 +00:00
"""
MALT-style dependency parser
"""
from __future__ import unicode_literals
cimport cython
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from libc.stdint cimport uint32_t, uint64_t
2015-06-02 16:38:41 +00:00
from libc.string cimport memset, memcpy
2014-12-16 11:44:43 +00:00
import random
import os.path
from os import path
2014-12-16 11:44:43 +00:00
import shutil
import json
import sys
2014-12-16 11:44:43 +00:00
from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport hash64
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
from thinc.features cimport ConjunctionExtracter
2014-12-16 11:44:43 +00:00
from util import Config
from ..structs cimport TokenC
from ..tokens.doc cimport Doc
from ..strings cimport StringStore
2014-12-16 11:44:43 +00:00
from .transition_system import OracleError
from .transition_system cimport TransitionSystem, Transition
2014-12-16 11:44:43 +00:00
from ..gold cimport GoldParse
2014-12-16 11:44:43 +00:00
from . import _parse_features
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from .stateclass cimport StateClass
2014-12-16 11:44:43 +00:00
2015-07-14 21:47:03 +00:00
2014-12-16 11:44:43 +00:00
2015-04-19 08:31:31 +00:00
DEBUG = False
2014-12-16 11:44:43 +00:00
def set_debug(val):
global DEBUG
DEBUG = val
def get_templates(name):
2014-12-17 10:09:29 +00:00
pf = _parse_features
2015-03-24 04:08:35 +00:00
if name == 'ner':
return pf.ner
elif name == 'debug':
return pf.unigrams
elif name.startswith('embed'):
2015-06-27 02:18:47 +00:00
return (pf.words, pf.tags, pf.labels)
else:
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
pf.tree_shape + pf.trigrams)
2014-12-16 11:44:43 +00:00
def ParserFactory(transition_system):
return lambda strings, dir_: Parser(strings, dir_, transition_system)
cdef class ParserModel(AveragedPerceptron):
def __init__(self, n_classes, templates):
AveragedPerceptron.__init__(self, n_classes,
ConjunctionExtracter(CONTEXT_SIZE, templates))
cdef void set_features(self, ExampleC* eg, StateClass stcls) except *:
fill_context(eg.atoms, stcls)
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
cdef class Parser:
def __init__(self, StringStore strings, transition_system, ParserModel model):
self.moves = transition_system
self.model = model
@classmethod
def from_dir(cls, model_dir, strings, transition_system):
if not os.path.exists(model_dir):
print >> sys.stderr, "Warning: No model found at", model_dir
elif not os.path.isdir(model_dir):
print >> sys.stderr, "Warning: model path:", model_dir, "is not a directory"
cfg = Config.read(model_dir, 'config')
moves = transition_system(strings, cfg.labels)
templates = get_templates(cfg.features)
model = ParserModel(moves.n_moves, templates)
if path.exists(path.join(model_dir, 'model')):
model.load(path.join(model_dir, 'model'))
return cls(strings, moves, model)
def __reduce__(self):
return (Parser, (self.moves.strings, self.moves, self.model), None, None)
def __call__(self, Doc tokens):
cdef StateClass stcls = StateClass.init(tokens.c, tokens.length)
self.moves.initialize_state(stcls)
cdef Pool mem = Pool()
cdef ExampleC eg = self.model.allocate(mem)
while not stcls.is_final():
self.model.set_features(&eg, stcls)
self.moves.set_valid(eg.is_valid, stcls)
self.model.set_prediction(&eg)
assert eg.is_valid[eg.guess]
action = self.moves.c[eg.guess]
action.do(stcls, action.label)
self.moves.finalize_state(stcls)
tokens.set_parse(stcls._sent)
def train(self, Doc tokens, GoldParse gold):
self.moves.preprocess_gold(gold)
2015-11-03 13:15:14 +00:00
cdef StateClass stcls = StateClass.init(tokens.c, tokens.length)
self.moves.initialize_state(stcls)
cdef Pool mem = Pool()
cdef ExampleC eg = self.model.allocate(mem)
2015-06-30 12:26:32 +00:00
cdef weight_t loss = 0
words = [w.orth_ for w in tokens]
cdef Transition action
while not stcls.is_final():
self.model.set_features(&eg, stcls)
self.moves.set_costs(eg.is_valid, eg.costs, stcls, gold)
self.model.set_prediction(&eg)
self.model.update(&eg)
action = self.moves.c[eg.guess]
action.do(stcls, action.label)
loss += eg.costs[eg.guess]
2015-06-30 12:26:32 +00:00
return loss
def step_through(self, Doc doc):
return StepwiseState(self, doc)
cdef class StepwiseState:
cdef readonly StateClass stcls
cdef readonly Example eg
cdef readonly Doc doc
cdef readonly Parser parser
def __init__(self, Parser parser, Doc doc):
self.parser = parser
self.doc = doc
2015-11-03 13:15:14 +00:00
self.stcls = StateClass.init(doc.c, doc.length)
self.parser.moves.initialize_state(self.stcls)
self.eg = Example(self.parser.model.n_classes, CONTEXT_SIZE,
self.parser.model.n_feats, self.parser.model.n_feats)
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.finish()
@property
def is_final(self):
return self.stcls.is_final()
@property
def stack(self):
return self.stcls.stack
@property
def queue(self):
return self.stcls.queue
@property
def heads(self):
return [self.stcls.H(i) for i in range(self.stcls.length)]
@property
def deps(self):
return [self.doc.vocab.strings[self.stcls._sent[i].dep]
for i in range(self.stcls.length)]
def predict(self):
self.parser.model.set_features(&self.eg.c, self.stcls)
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls)
self.parser.model.set_prediction(&self.eg.c)
action = self.parser.moves.c[self.eg.c.guess]
return self.parser.moves.move_name(action.move, action.label)
def transition(self, action_name):
moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
if action_name == '_':
action_name = self.predict()
2015-08-10 03:58:43 +00:00
action = self.parser.moves.lookup_transition(action_name)
elif action_name == 'L' or action_name == 'R':
self.predict()
move = moves[action_name]
clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
self.eg.c.nr_class)
action = self.parser.moves.c[clas]
else:
action = self.parser.moves.lookup_transition(action_name)
action.do(self.stcls, action.label)
def finish(self):
if self.stcls.is_final():
self.parser.moves.finalize_state(self.stcls)
self.doc.set_parse(self.stcls._sent)
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
int nr_class) except -1:
cdef weight_t score = 0
cdef int mode = -1
cdef int i
for i in range(nr_class):
if actions[i].move == move and (mode == -1 or scores[i] >= score):
2015-08-10 03:58:43 +00:00
mode = i
score = scores[i]
return mode