lightning/examples/pytorch/basics/README.md

57 lines
1.6 KiB
Markdown

## Basic Examples
Use these examples to test how Lightning works.
### AutoEncoder
This script shows you how to implement a CNN auto-encoder.
```bash
# CPU
python autoencoder.py
# GPUs (any number)
python autoencoder.py --trainer.accelerator 'gpu' --trainer.devices 2
# Distributed Data Parallel (DDP)
python autoencoder.py --trainer.accelerator 'gpu' --trainer.devices 2 --trainer.strategy 'ddp'
```
______________________________________________________________________
### Backbone Image Classifier
This script shows you how to implement a `LightningModule` as a system.
A system describes a `LightningModule` which takes a single `torch.nn.Module` which makes exporting to producion simpler.
```bash
# CPU
python backbone_image_classifier.py
# GPUs (any number)
python backbone_image_classifier.py --trainer.accelerator 'gpu' --trainer.devices 2
# Distributed Data Parallel (DDP)
python backbone_image_classifier.py --trainer.accelerator 'gpu' --trainer.devices 2 --trainer.strategy 'ddp'
```
______________________________________________________________________
### Transformers
This example contains a simple training loop for next-word prediction with a [Transformer model](https://arxiv.org/abs/1706.03762) on a subset of the [WikiText2](https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/) dataset.
```bash
python transformer.py
```
______________________________________________________________________
### PyTorch Profiler
This script shows you how to activate the [PyTorch Profiler](https://github.com/pytorch/kineto) with Lightning.
```bash
python profiler_example.py
```