## Basic Examples Use these examples to test how Lightning works. ### AutoEncoder This script shows you how to implement a CNN auto-encoder. ```bash # CPU python autoencoder.py # GPUs (any number) python autoencoder.py --trainer.accelerator 'gpu' --trainer.devices 2 # Distributed Data Parallel (DDP) python autoencoder.py --trainer.accelerator 'gpu' --trainer.devices 2 --trainer.strategy 'ddp' ``` ______________________________________________________________________ ### Backbone Image Classifier This script shows you how to implement a `LightningModule` as a system. A system describes a `LightningModule` which takes a single `torch.nn.Module` which makes exporting to producion simpler. ```bash # CPU python backbone_image_classifier.py # GPUs (any number) python backbone_image_classifier.py --trainer.accelerator 'gpu' --trainer.devices 2 # Distributed Data Parallel (DDP) python backbone_image_classifier.py --trainer.accelerator 'gpu' --trainer.devices 2 --trainer.strategy 'ddp' ``` ______________________________________________________________________ ### Transformers This example contains a simple training loop for next-word prediction with a [Transformer model](https://arxiv.org/abs/1706.03762) on a subset of the [WikiText2](https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/) dataset. ```bash python transformer.py ``` ______________________________________________________________________ ### PyTorch Profiler This script shows you how to activate the [PyTorch Profiler](https://github.com/pytorch/kineto) with Lightning. ```bash python profiler_example.py ```