lightning/pl_examples/basic_examples/mnist_examples/README.md

68 lines
2.1 KiB
Markdown

## MNIST Examples
Here are 5 MNIST examples showing you how to gradually convert from pure PyTorch to PyTorch Lightning.
The transition through [LightningLite](https://pytorch-lightning.readthedocs.io/en/latest/stable/lightning_lite.rst) from pure PyTorch is optional but it might be helpful to learn about it.
#### 1. Image Classifier with Vanilla PyTorch
Trains a simple CNN over MNIST using vanilla PyTorch.
```bash
# CPU
python image_classifier_1_pytorch.py
```
______________________________________________________________________
#### 2. Image Classifier with LightningLite
This script shows you how to scale the previous script to enable GPU and multi-GPU training using [LightningLite](https://pytorch-lightning.readthedocs.io/en/stable/starter/lightning_lite.html).
```bash
# CPU / multiple GPUs if available
python image_classifier_2_lite.py
```
______________________________________________________________________
#### 3. Image Classifier - Conversion from Lite to Lightning
This script shows you how to prepare your conversion from [LightningLite](https://pytorch-lightning.readthedocs.io/en/stable/starter/lightning_lite.html) to `LightningModule`.
```bash
# CPU / multiple GPUs if available
python image_classifier_3_lite_to_lightning_module.py
```
______________________________________________________________________
#### 4. Image Classifier with LightningModule
This script shows you the result of the conversion to the `LightningModule` and finally all the benefits you get from Lightning.
```bash
# CPU
python image_classifier_4_lightning_module.py
# GPUs (any number)
python image_classifier_4_lightning_module.py --trainer.gpus 2
```
______________________________________________________________________
#### 5. Image Classifier with LightningModule and LightningDataModule
This script shows you how to extract the data related components into a `LightningDataModule`.
```bash
# CPU
python image_classifier_5_lightning_datamodule.py
# GPUs (any number)
python image_classifier_5_lightning_datamodule.py --trainer.gpus 2
# Distributed Data parallel
python image_classifier_5_lightning_datamodule.py --trainer.gpus 2 --trainer.strategy 'ddp'
```