## MNIST Examples Here are 5 MNIST examples showing you how to gradually convert from pure PyTorch to PyTorch Lightning. The transition through [LightningLite](https://pytorch-lightning.readthedocs.io/en/latest/stable/lightning_lite.rst) from pure PyTorch is optional but it might be helpful to learn about it. #### 1. Image Classifier with Vanilla PyTorch Trains a simple CNN over MNIST using vanilla PyTorch. ```bash # CPU python image_classifier_1_pytorch.py ``` ______________________________________________________________________ #### 2. Image Classifier with LightningLite This script shows you how to scale the previous script to enable GPU and multi-GPU training using [LightningLite](https://pytorch-lightning.readthedocs.io/en/stable/starter/lightning_lite.html). ```bash # CPU / multiple GPUs if available python image_classifier_2_lite.py ``` ______________________________________________________________________ #### 3. Image Classifier - Conversion from Lite to Lightning This script shows you how to prepare your conversion from [LightningLite](https://pytorch-lightning.readthedocs.io/en/stable/starter/lightning_lite.html) to `LightningModule`. ```bash # CPU / multiple GPUs if available python image_classifier_3_lite_to_lightning_module.py ``` ______________________________________________________________________ #### 4. Image Classifier with LightningModule This script shows you the result of the conversion to the `LightningModule` and finally all the benefits you get from Lightning. ```bash # CPU python image_classifier_4_lightning_module.py # GPUs (any number) python image_classifier_4_lightning_module.py --trainer.gpus 2 ``` ______________________________________________________________________ #### 5. Image Classifier with LightningModule and LightningDataModule This script shows you how to extract the data related components into a `LightningDataModule`. ```bash # CPU python image_classifier_5_lightning_datamodule.py # GPUs (any number) python image_classifier_5_lightning_datamodule.py --trainer.gpus 2 # Distributed Data parallel python image_classifier_5_lightning_datamodule.py --trainer.gpus 2 --trainer.strategy 'ddp' ```