158 lines
5.5 KiB
Python
158 lines
5.5 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from typing import Optional
|
|
from unittest import mock
|
|
from unittest.mock import patch
|
|
|
|
import pytest
|
|
import torch
|
|
from torch.nn.parallel.distributed import DistributedDataParallel
|
|
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.callbacks import Callback
|
|
from tests.accelerators import ddp_model
|
|
from tests.helpers.boring_model import BoringModel
|
|
from tests.helpers.runif import RunIf
|
|
from tests.utilities.distributed import call_training_script
|
|
|
|
CLI_ARGS = "--max_epochs 1 --gpus 2 --accelerator ddp"
|
|
|
|
|
|
@RunIf(min_gpus=2)
|
|
@pytest.mark.parametrize("as_module", [True, False])
|
|
def test_multi_gpu_model_ddp_fit_only(tmpdir, as_module):
|
|
# call the script
|
|
call_training_script(ddp_model, CLI_ARGS, "fit", tmpdir, timeout=120, as_module=as_module)
|
|
|
|
# load the results of the script
|
|
result_path = os.path.join(tmpdir, "ddp.result")
|
|
result = torch.load(result_path)
|
|
|
|
# verify the file wrote the expected outputs
|
|
assert result["status"] == "complete"
|
|
|
|
|
|
@RunIf(min_gpus=2)
|
|
@pytest.mark.parametrize("as_module", [True, False])
|
|
def test_multi_gpu_model_ddp_test_only(tmpdir, as_module):
|
|
# call the script
|
|
call_training_script(ddp_model, CLI_ARGS, "test", tmpdir, as_module=as_module)
|
|
|
|
# load the results of the script
|
|
result_path = os.path.join(tmpdir, "ddp.result")
|
|
result = torch.load(result_path)
|
|
|
|
# verify the file wrote the expected outputs
|
|
assert result["status"] == "complete"
|
|
|
|
|
|
@RunIf(min_gpus=2)
|
|
@pytest.mark.parametrize("as_module", [True, False])
|
|
def test_multi_gpu_model_ddp_fit_test(tmpdir, as_module):
|
|
# call the script
|
|
call_training_script(ddp_model, CLI_ARGS, "fit_test", tmpdir, timeout=20, as_module=as_module)
|
|
|
|
# load the results of the script
|
|
result_path = os.path.join(tmpdir, "ddp.result")
|
|
result = torch.load(result_path)
|
|
|
|
# verify the file wrote the expected outputs
|
|
assert result["status"] == "complete"
|
|
|
|
model_outs = result["result"]
|
|
for out in model_outs:
|
|
assert out["test_acc"] > 0.7
|
|
|
|
|
|
@RunIf(skip_windows=True)
|
|
@pytest.mark.skipif(torch.cuda.is_available(), reason="test doesn't requires GPU machine")
|
|
def test_torch_distributed_backend_env_variables(tmpdir):
|
|
"""
|
|
This test set `undefined` as torch backend and should raise an `Backend.UNDEFINED` ValueError.
|
|
"""
|
|
_environ = {"PL_TORCH_DISTRIBUTED_BACKEND": "undefined", "CUDA_VISIBLE_DEVICES": "0,1", "WORLD_SIZE": "2"}
|
|
with patch.dict(os.environ, _environ), patch("torch.cuda.device_count", return_value=2):
|
|
with pytest.raises(ValueError, match="Invalid backend: 'undefined'"):
|
|
model = BoringModel()
|
|
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, accelerator="ddp", gpus=2, logger=False)
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(skip_windows=True)
|
|
@mock.patch("torch.cuda.device_count", return_value=1)
|
|
@mock.patch("torch.cuda.is_available", return_value=True)
|
|
@mock.patch("torch.cuda.set_device")
|
|
@mock.patch.dict(os.environ, {"PL_TORCH_DISTRIBUTED_BACKEND": "gloo"}, clear=True)
|
|
def test_ddp_torch_dist_is_available_in_setup(mock_set_device, mock_is_available, mock_device_count, tmpdir):
|
|
"""
|
|
Test to ensure torch distributed is available within the setup hook using ddp
|
|
"""
|
|
|
|
class TestModel(BoringModel):
|
|
def setup(self, stage: Optional[str] = None) -> None:
|
|
assert torch.distributed.is_initialized()
|
|
raise SystemExit()
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, accelerator="ddp", gpus=1)
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_gpus=2, min_torch="1.8.1", special=True)
|
|
def test_ddp_wrapper_16(tmpdir):
|
|
_test_ddp_wrapper(tmpdir, precision=16)
|
|
|
|
|
|
@RunIf(min_gpus=2, min_torch="1.8.1", special=True)
|
|
def test_ddp_wrapper_32(tmpdir):
|
|
_test_ddp_wrapper(tmpdir, precision=32)
|
|
|
|
|
|
def _test_ddp_wrapper(tmpdir, precision):
|
|
"""
|
|
Test parameters to ignore are carried over for DDP.
|
|
"""
|
|
|
|
class WeirdModule(torch.nn.Module):
|
|
def _save_to_state_dict(self, destination, prefix, keep_vars):
|
|
return {"something": "something"}
|
|
|
|
class CustomModel(BoringModel):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.weird_module = WeirdModule()
|
|
|
|
# should be skip.
|
|
self._ddp_params_and_buffers_to_ignore = "something"
|
|
|
|
class CustomCallback(Callback):
|
|
def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
|
|
assert isinstance(trainer.training_type_plugin.model, DistributedDataParallel)
|
|
assert trainer.training_type_plugin.model.parameters_to_ignore == ("something")
|
|
assert trainer.training_type_plugin.model.module._ddp_params_and_buffers_to_ignore == ("something")
|
|
|
|
model = CustomModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
fast_dev_run=True,
|
|
precision=precision,
|
|
accelerator="ddp",
|
|
gpus=2,
|
|
callbacks=CustomCallback(),
|
|
)
|
|
trainer.fit(model)
|