lightning/tests
Carlos Mocholí 49c0485d50
Avoid optional `Tracker` attributes and enable mypy (#9320)
2021-09-06 00:20:44 +00:00
..
accelerators Add support for CPU AMP autocast (#9084) 2021-08-25 12:18:00 +00:00
base Replace `yapf` with `black` (#7783) 2021-07-26 13:37:35 +02:00
callbacks Support infinite training (#8877) 2021-09-04 23:33:43 +00:00
checkpointing Disable `{save,check}_on_train_epoch_end` with `check_val_every_n_epoch>1` (#9156) 2021-09-03 14:27:44 +00:00
core scheduled removal of auto_move_data decorator (#9231) 2021-09-03 00:54:36 +02:00
deprecated_api scheduled removal of auto_move_data decorator (#9231) 2021-09-03 00:54:36 +02:00
helpers feat: Add Rich Progress Bar (#8929) 2021-08-24 02:40:36 +00:00
loggers [bugfix] Changed CometLogger to stop modifying metrics in place (#9150) 2021-08-31 08:21:16 +00:00
loops Avoid optional `Tracker` attributes and enable mypy (#9320) 2021-09-06 00:20:44 +00:00
models Update call to `amp.autocast` from `fast_dtype` to `dtype` (#9211) 2021-09-04 02:59:11 +00:00
overrides scheduled removal of auto_move_data decorator (#9231) 2021-09-03 00:54:36 +02:00
plugins Update call to `amp.autocast` from `fast_dtype` to `dtype` (#9211) 2021-09-04 02:59:11 +00:00
profiler removing legacy profiler arg (#9178) 2021-08-30 09:37:09 +00:00
trainer Avoid optional `Tracker` attributes and enable mypy (#9320) 2021-09-06 00:20:44 +00:00
tuner remove lightning module datamodule property (#9233) 2021-09-02 00:43:47 +02:00
utilities Allow easy CLI trainer re-instantiation (#9241) 2021-09-03 00:56:30 +02:00
README.md CI: add mdformat (#8673) 2021-08-03 18:19:09 +00:00
__init__.py Replace `yapf` with `black` (#7783) 2021-07-26 13:37:35 +02:00
conftest.py Add `ShardedTensor` support in `LightningModule` (#8944) 2021-08-23 19:59:38 +00:00
mnode_tests.txt Mnodes (#5020) 2021-02-04 20:55:40 +01:00
special_tests.sh Call any trainer function from the `LightningCLI` (#7508) 2021-08-28 04:43:14 +00:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install dev deps
pip install -r requirements/devel.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have at least 2 GPUs to run distributed tests.

Note that this setup will not run tests that require specific packages installed such as Horovod, FairScale, NVIDIA/apex, NVIDIA/DALI, etc. You can rely on our CI to make sure all these tests pass.

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under requirements/devel.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v

# print coverage stats
coverage report -m

# exporting results
coverage xml

Building test image

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch_lightning:devel-torch1.9 -f dockers/cuda-extras/Dockerfile --build-arg TORCH_VERSION=1.9 .

To build other versions, select different Dockerfile.

docker image list
docker run --rm -it pytorch_lightning:devel-torch1.9 bash
docker image rm pytorch_lightning:devel-torch1.9