# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Optional from unittest import mock from unittest.mock import patch import pytest import torch from torch.nn.parallel.distributed import DistributedDataParallel import pytorch_lightning as pl from pytorch_lightning import Trainer from pytorch_lightning.callbacks import Callback from tests.accelerators import ddp_model from tests.helpers.boring_model import BoringModel from tests.helpers.runif import RunIf from tests.utilities.distributed import call_training_script CLI_ARGS = "--max_epochs 1 --gpus 2 --accelerator ddp" @RunIf(min_gpus=2) @pytest.mark.parametrize("as_module", [True, False]) def test_multi_gpu_model_ddp_fit_only(tmpdir, as_module): # call the script call_training_script(ddp_model, CLI_ARGS, "fit", tmpdir, timeout=120, as_module=as_module) # load the results of the script result_path = os.path.join(tmpdir, "ddp.result") result = torch.load(result_path) # verify the file wrote the expected outputs assert result["status"] == "complete" @RunIf(min_gpus=2) @pytest.mark.parametrize("as_module", [True, False]) def test_multi_gpu_model_ddp_test_only(tmpdir, as_module): # call the script call_training_script(ddp_model, CLI_ARGS, "test", tmpdir, as_module=as_module) # load the results of the script result_path = os.path.join(tmpdir, "ddp.result") result = torch.load(result_path) # verify the file wrote the expected outputs assert result["status"] == "complete" @RunIf(min_gpus=2) @pytest.mark.parametrize("as_module", [True, False]) def test_multi_gpu_model_ddp_fit_test(tmpdir, as_module): # call the script call_training_script(ddp_model, CLI_ARGS, "fit_test", tmpdir, timeout=20, as_module=as_module) # load the results of the script result_path = os.path.join(tmpdir, "ddp.result") result = torch.load(result_path) # verify the file wrote the expected outputs assert result["status"] == "complete" model_outs = result["result"] for out in model_outs: assert out["test_acc"] > 0.7 @RunIf(skip_windows=True) @pytest.mark.skipif(torch.cuda.is_available(), reason="test doesn't requires GPU machine") def test_torch_distributed_backend_env_variables(tmpdir): """ This test set `undefined` as torch backend and should raise an `Backend.UNDEFINED` ValueError. """ _environ = {"PL_TORCH_DISTRIBUTED_BACKEND": "undefined", "CUDA_VISIBLE_DEVICES": "0,1", "WORLD_SIZE": "2"} with patch.dict(os.environ, _environ), patch("torch.cuda.device_count", return_value=2): with pytest.raises(ValueError, match="Invalid backend: 'undefined'"): model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, accelerator="ddp", gpus=2, logger=False) trainer.fit(model) @RunIf(skip_windows=True) @mock.patch("torch.cuda.device_count", return_value=1) @mock.patch("torch.cuda.is_available", return_value=True) @mock.patch("torch.cuda.set_device") @mock.patch.dict(os.environ, {"PL_TORCH_DISTRIBUTED_BACKEND": "gloo"}, clear=True) def test_ddp_torch_dist_is_available_in_setup(mock_set_device, mock_is_available, mock_device_count, tmpdir): """ Test to ensure torch distributed is available within the setup hook using ddp """ class TestModel(BoringModel): def setup(self, stage: Optional[str] = None) -> None: assert torch.distributed.is_initialized() raise SystemExit() model = TestModel() trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, accelerator="ddp", gpus=1) with pytest.raises(SystemExit): trainer.fit(model) @RunIf(min_gpus=2, min_torch="1.8.1", special=True) def test_ddp_wrapper_16(tmpdir): _test_ddp_wrapper(tmpdir, precision=16) @RunIf(min_gpus=2, min_torch="1.8.1", special=True) def test_ddp_wrapper_32(tmpdir): _test_ddp_wrapper(tmpdir, precision=32) def _test_ddp_wrapper(tmpdir, precision): """ Test parameters to ignore are carried over for DDP. """ class WeirdModule(torch.nn.Module): def _save_to_state_dict(self, destination, prefix, keep_vars): return {"something": "something"} class CustomModel(BoringModel): def __init__(self): super().__init__() self.weird_module = WeirdModule() # should be skip. self._ddp_params_and_buffers_to_ignore = "something" class CustomCallback(Callback): def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: assert isinstance(trainer.training_type_plugin.model, DistributedDataParallel) assert trainer.training_type_plugin.model.parameters_to_ignore == ("something") assert trainer.training_type_plugin.model.module._ddp_params_and_buffers_to_ignore == ("something") model = CustomModel() trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=True, precision=precision, accelerator="ddp", gpus=2, callbacks=CustomCallback(), ) trainer.fit(model)