lightning/tests
Adrian Wälchli 22d9464e56
HenryJia: auto-move data decorator (#1905)
* First attempt at auto-moving data for inference

* Correct my copypaste errors

* Correct for if device is CPU

* Get rid of the WIP code I accidentally added

* Add tests

* Make tests more foolproof

* Make sure we stick with pep8 formatting

* Clarify docs a little

* Apply suggestions from code review

* Get everything working again hopefully

* refactor and added hook


variant a


variant b


add test


revert rename


add changelog


docs

* move changelog entry to top

* Move data transfer to utilities

* Add back in warnings for autotransfer

* Get rid of the test code I ended up accidentally commiting again

* Add docs any changelog

* Correct PR number in Changelog

* Correct changelog

* Update data.py

* Update test_cpu.py

* make a decorator

* type hint

* changelog

* changelog

* remove old function

* import

* test for decorator

* fix test

* remove old test

* doctest

* apply decorator directly

* convert doctest to code block

* prevent side effects in tests

* fix merge

* update forward docs

* update docs

* added docs in section "deployment / prediction"

* update changelog

Co-authored-by: Hengjian Jia <henryjia18@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-06-15 17:04:32 -04:00
..
base Add ckpt_path option to LightningModule.test() (#2190) 2020-06-15 08:02:37 -04:00
callbacks temporarily fixes early stopping bug (#2119) 2020-06-08 19:28:26 -04:00
core HenryJia: auto-move data decorator (#1905) 2020-06-15 17:04:32 -04:00
loggers remove deprecated API for v0.8 (#2073) 2020-06-12 14:37:52 -04:00
metrics Fix for accuracy calculation (#2183) 2020-06-14 18:14:29 -04:00
models Add ckpt_path option to LightningModule.test() (#2190) 2020-06-15 08:02:37 -04:00
trainer Add ckpt_path option to LightningModule.test() (#2190) 2020-06-15 08:02:37 -04:00
utilities New metric classes (#1326) (#1877) 2020-05-19 11:05:07 -04:00
Dockerfile clean requirements (#2128) 2020-06-13 10:15:22 -04:00
README.md clean requirements (#2128) 2020-06-13 10:15:22 -04:00
__init__.py default test logger (#1478) 2020-04-21 20:33:10 -04:00
collect_env_details.py cleaning (#2030) 2020-06-04 11:25:07 -04:00
conftest.py Allow loading checkpoints from urls (#1667) 2020-06-11 17:12:48 -04:00
install_AMP.sh CI: split tests-examples (#990) 2020-03-25 07:46:27 -04:00
test_deprecated.py remove deprecated API for v0.8 (#2073) 2020-06-12 14:37:52 -04:00
test_profiler.py RC & Docs/changelog (#1776) 2020-05-11 21:57:53 -04:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

The automatic travis tests ONLY run CPU-based tests. Although these cover most of the use cases, run on a 2-GPU machine to validate the full test-suite.

To run all tests do the following:

Install Open MPI or another MPI implementation. Learn how to install Open MPI on this page.

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install AMP support
bash tests/install_AMP.sh

# install dev deps
pip install -r requirements/devel.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have:

  1. At least 2 GPUs.
  2. NVIDIA-apex installed.
  3. Horovod with NCCL support: HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL pip install horovod

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under requirements/devel.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v

# print coverage stats
coverage report -m

# exporting results
coverage xml

Building test image

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch_lightning:devel-pt_1_4 -f tests/Dockerfile --build-arg TORCH_VERSION=1.4 .

To build other versions, select different Dockerfile.

docker image list
docker run --rm -it pytorch_lightning:devel-pt_1_4 bash
docker image rm pytorch_lightning:devel-pt_1_4