RC & Docs/changelog (#1776)
* missing * RC * tol * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * test Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
This commit is contained in:
parent
d120f97896
commit
9d2df24d6b
18
CHANGELOG.md
18
CHANGELOG.md
|
@ -16,7 +16,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
|
|||
|
||||
- Added auto scaling of batch size ([#1638](https://github.com/PyTorchLightning/pytorch-lightning/pull/1638))
|
||||
|
||||
- The progress bar metrics now also get updated in `training_epoch_end` ([#1724](https://github.com/PyTorchLightning/pytorch-lightning/pull/1724)).
|
||||
- The progress bar metrics now also get updated in `training_epoch_end` ([#1724](https://github.com/PyTorchLightning/pytorch-lightning/pull/1724))
|
||||
|
||||
- Enable `NeptuneLogger` to work with `distributed_backend=ddp` ([#1753](https://github.com/PyTorchLightning/pytorch-lightning/pull/1753))
|
||||
|
||||
### Changed
|
||||
|
||||
|
@ -24,15 +26,25 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
|
|||
|
||||
- Updated LightningTemplateModel to look more like Colab example ([#1577](https://github.com/PyTorchLightning/pytorch-lightning/pull/1577))
|
||||
|
||||
- Don't convert `namedtuple` to `tuple` when transferring the batch to target device ([#1589](https://github.com/PyTorchLightning/pytorch-lightning/pull/1589))
|
||||
|
||||
- Allow passing hparams as keyword argument to LightningModule when loading from checkpoint ([#1639](https://github.com/PyTorchLightning/pytorch-lightning/pull/1639))
|
||||
|
||||
### Deprecated
|
||||
|
||||
### Removed
|
||||
|
||||
### Fixed
|
||||
|
||||
- Fixed ModelCheckpoint not None checking filepath ([1654](https://github.com/PyTorchLightning/pytorch-lightning/pull/1654))
|
||||
- Fixed broken link in PR template ([#1675](https://github.com/PyTorchLightning/pytorch-lightning/pull/1675))
|
||||
|
||||
- Trainer now calls `on_load_checkpoint()` when resuming from a checkpoint ([1666](https://github.com/PyTorchLightning/pytorch-lightning/pull/1666))
|
||||
- Fixed ModelCheckpoint not None checking filepath ([#1654](https://github.com/PyTorchLightning/pytorch-lightning/pull/1654))
|
||||
|
||||
- Trainer now calls `on_load_checkpoint()` when resuming from a checkpoint ([#1666](https://github.com/PyTorchLightning/pytorch-lightning/pull/1666))
|
||||
|
||||
- Fixed sampler logic for ddp with iterable dataset ([#1734](https://github.com/PyTorchLightning/pytorch-lightning/pull/1734))
|
||||
|
||||
- Fixed `_reset_eval_dataloader()` for IterableDataset ([#1560](https://github.com/PyTorchLightning/pytorch-lightning/pull/1560))
|
||||
|
||||
- Fixed Horovod distributed backend to set the `root_gpu` property ([#1669](https://github.com/PyTorchLightning/pytorch-lightning/pull/1669))
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
"""Root package info."""
|
||||
|
||||
__version__ = '0.7.5'
|
||||
__version__ = '0.7.6rc1'
|
||||
__author__ = 'William Falcon et al.'
|
||||
__author_email__ = 'waf2107@columbia.edu'
|
||||
__license__ = 'Apache-2.0'
|
||||
|
|
|
@ -45,15 +45,16 @@ def run_test_from_config(trainer_options):
|
|||
ckpt_path = trainer_options['default_root_dir']
|
||||
trainer_options.update(checkpoint_callback=ModelCheckpoint(ckpt_path))
|
||||
|
||||
model = EvalModelTemplate(EvalModelTemplate.get_default_hparams())
|
||||
model = EvalModelTemplate()
|
||||
run_model_test(trainer_options, model, on_gpu=args.on_gpu, version=0, with_hpc=False)
|
||||
|
||||
# Horovod should be initialized following training. If not, this will raise an exception.
|
||||
assert hvd.size() == 2
|
||||
|
||||
if args.on_gpu:
|
||||
trainer = Trainer(gpus=1, distributed_backend='horovod', max_epochs=1)
|
||||
# Test the root_gpu property
|
||||
assert Trainer(gpus=1, distributed_backend='horovod', max_epochs=1).root_gpu == hvd.local_rank()
|
||||
assert trainer.root_gpu == hvd.local_rank()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -7,7 +7,7 @@ import pytest
|
|||
|
||||
from pytorch_lightning.profiler import AdvancedProfiler, SimpleProfiler
|
||||
|
||||
PROFILER_OVERHEAD_MAX_TOLERANCE = 0.0001
|
||||
PROFILER_OVERHEAD_MAX_TOLERANCE = 0.0005
|
||||
|
||||
|
||||
def _get_python_cprofile_total_duration(profile):
|
||||
|
|
Loading…
Reference in New Issue