120 lines
4.2 KiB
Python
120 lines
4.2 KiB
Python
"""Test deprecated functionality which will be removed in vX.Y.Z"""
|
|
import sys
|
|
|
|
import pytest
|
|
|
|
from pytorch_lightning import Trainer
|
|
from tests.base import EvalModelTemplate
|
|
|
|
|
|
def _soft_unimport_module(str_module):
|
|
# once the module is imported e.g with parsing with pytest it lives in memory
|
|
if str_module in sys.modules:
|
|
del sys.modules[str_module]
|
|
|
|
|
|
def test_tbd_remove_in_v0_9_0_trainer():
|
|
# test show_progress_bar set by progress_bar_refresh_rate
|
|
with pytest.deprecated_call(match='v0.9.0'):
|
|
trainer = Trainer(progress_bar_refresh_rate=0, show_progress_bar=True)
|
|
assert not getattr(trainer, 'show_progress_bar')
|
|
|
|
with pytest.deprecated_call(match='v0.9.0'):
|
|
trainer = Trainer(progress_bar_refresh_rate=50, show_progress_bar=False)
|
|
assert getattr(trainer, 'show_progress_bar')
|
|
|
|
with pytest.deprecated_call(match='v0.9.0'):
|
|
trainer = Trainer(num_tpu_cores=8)
|
|
assert trainer.tpu_cores == 8
|
|
|
|
|
|
def test_tbd_remove_in_v0_9_0_module_imports():
|
|
_soft_unimport_module("pytorch_lightning.core.decorators")
|
|
with pytest.deprecated_call(match='v0.9.0'):
|
|
from pytorch_lightning.core.decorators import data_loader # noqa: F811
|
|
data_loader(print)
|
|
|
|
_soft_unimport_module("pytorch_lightning.logging.comet")
|
|
with pytest.deprecated_call(match='v0.9.0'):
|
|
from pytorch_lightning.logging.comet import CometLogger # noqa: F402
|
|
_soft_unimport_module("pytorch_lightning.logging.mlflow")
|
|
with pytest.deprecated_call(match='v0.9.0'):
|
|
from pytorch_lightning.logging.mlflow import MLFlowLogger # noqa: F402
|
|
_soft_unimport_module("pytorch_lightning.logging.neptune")
|
|
with pytest.deprecated_call(match='v0.9.0'):
|
|
from pytorch_lightning.logging.neptune import NeptuneLogger # noqa: F402
|
|
_soft_unimport_module("pytorch_lightning.logging.test_tube")
|
|
with pytest.deprecated_call(match='v0.9.0'):
|
|
from pytorch_lightning.logging.test_tube import TestTubeLogger # noqa: F402
|
|
_soft_unimport_module("pytorch_lightning.logging.wandb")
|
|
with pytest.deprecated_call(match='v0.9.0'):
|
|
from pytorch_lightning.logging.wandb import WandbLogger # noqa: F402
|
|
|
|
|
|
class ModelVer0_6(EvalModelTemplate):
|
|
|
|
# todo: this shall not be needed while evaluate asks for dataloader explicitly
|
|
def val_dataloader(self):
|
|
return self.dataloader(train=False)
|
|
|
|
def validation_step(self, batch, batch_idx, *args, **kwargs):
|
|
return {'val_loss': 0.6}
|
|
|
|
def validation_end(self, outputs):
|
|
return {'val_loss': 0.6}
|
|
|
|
def test_dataloader(self):
|
|
return self.dataloader(train=False)
|
|
|
|
def test_end(self, outputs):
|
|
return {'test_loss': 0.6}
|
|
|
|
|
|
class ModelVer0_7(EvalModelTemplate):
|
|
|
|
# todo: this shall not be needed while evaluate asks for dataloader explicitly
|
|
def val_dataloader(self):
|
|
return self.dataloader(train=False)
|
|
|
|
def validation_step(self, batch, batch_idx, *args, **kwargs):
|
|
return {'val_loss': 0.7}
|
|
|
|
def validation_end(self, outputs):
|
|
return {'val_loss': 0.7}
|
|
|
|
def test_dataloader(self):
|
|
return self.dataloader(train=False)
|
|
|
|
def test_end(self, outputs):
|
|
return {'test_loss': 0.7}
|
|
|
|
|
|
def test_tbd_remove_in_v1_0_0_model_hooks():
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
|
|
model = ModelVer0_6(hparams)
|
|
|
|
with pytest.deprecated_call(match='v1.0'):
|
|
trainer = Trainer(logger=False)
|
|
trainer.test(model)
|
|
assert trainer.callback_metrics == {'test_loss': 0.6}
|
|
|
|
with pytest.deprecated_call(match='v1.0'):
|
|
trainer = Trainer(logger=False)
|
|
# TODO: why `dataloder` is required if it is not used
|
|
result = trainer._evaluate(model, dataloaders=[[None]], max_batches=1)
|
|
assert result == {'val_loss': 0.6}
|
|
|
|
model = ModelVer0_7(hparams)
|
|
|
|
with pytest.deprecated_call(match='v1.0'):
|
|
trainer = Trainer(logger=False)
|
|
trainer.test(model)
|
|
assert trainer.callback_metrics == {'test_loss': 0.7}
|
|
|
|
with pytest.deprecated_call(match='v1.0'):
|
|
trainer = Trainer(logger=False)
|
|
# TODO: why `dataloder` is required if it is not used
|
|
result = trainer._evaluate(model, dataloaders=[[None]], max_batches=1)
|
|
assert result == {'val_loss': 0.7}
|