lightning/pl_examples/models/unet.py

123 lines
3.5 KiB
Python
Raw Normal View History

import torch
import torch.nn as nn
import torch.nn.functional as F
class UNet(nn.Module):
"""
Architecture based on U-Net: Convolutional Networks for Biomedical Image Segmentation
Link - https://arxiv.org/abs/1505.04597
Parameters:
num_classes: Number of output classes required (default 19 for KITTI dataset)
num_layers: Number of layers in each side of U-net
features_start: Number of features in first layer
bilinear: Whether to use bilinear interpolation or transposed
convolutions for upsampling.
"""
def __init__(
self, num_classes: int = 19,
num_layers: int = 5,
features_start: int = 64,
bilinear: bool = False
):
super().__init__()
self.num_layers = num_layers
layers = [DoubleConv(3, features_start)]
feats = features_start
for _ in range(num_layers - 1):
layers.append(Down(feats, feats * 2))
feats *= 2
for _ in range(num_layers - 1):
layers.append(Up(feats, feats // 2, bilinear))
feats //= 2
layers.append(nn.Conv2d(feats, num_classes, kernel_size=1))
self.layers = nn.ModuleList(layers)
def forward(self, x):
xi = [self.layers[0](x)]
# Down path
for layer in self.layers[1:self.num_layers]:
xi.append(layer(xi[-1]))
# Up path
for i, layer in enumerate(self.layers[self.num_layers:-1]):
xi[-1] = layer(xi[-1], xi[-2 - i])
return self.layers[-1](xi[-1])
class DoubleConv(nn.Module):
"""
Double Convolution and BN and ReLU
(3x3 conv -> BN -> ReLU) ** 2
"""
Custom argparser extension with Trainer arguments (argument types added) (#1147) * `add_argparse_args` method fixed (argument types added) * CHANGELOG.md upd * autopep8 fixes * --gpus=0 removed from test (for ci tests) * typo fixed * reduce on plateau scheduler fixed * Trainer cli related tests moved to test_trainer_cli.py * refactored: get_init_arguments_and_types is a public classmethod of the Trainer now * test_get_init_arguments_and_types added * autopep8 fixes * Trainer cli related tests moved to test_trainer_cli.py * refactored: get_init_arguments_and_types is a public classmethod of the Trainer now * test_get_init_arguments_and_types added * autopep8 fixes * Trainer cli related tests moved to test_trainer_cli.py * refactored: get_init_arguments_and_types is a public classmethod of the Trainer now * test_get_init_arguments_and_types added * autopep8 fixes * Trainer cli related tests moved to test_trainer_cli.py * test_get_init_arguments_and_types added * autopep8 fixes * Apply suggestions from code review * cosmetics * cosmetics * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * `Trainer.get_init_arguments_and_types` now returns arg types wrapped in tuples (not in sets) * deprecated args are now ignored in argparser * get_deprecated_arg_names small refactor * get_deprecated_arg_names bug fixed * Trainer cli related tests moved to test_trainer_cli.py * refactored: get_init_arguments_and_types is a public classmethod of the Trainer now * test_get_init_arguments_and_types added * autopep8 fixes * Trainer cli related tests moved to test_trainer_cli.py * autopep8 fixes * Trainer cli related tests moved to test_trainer_cli.py * Trainer cli related tests moved to test_trainer_cli.py * test_get_init_arguments_and_types added * autopep8 fixes * autopep8 fixes * Apply suggestions from code review * cosmetics * cosmetics * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * `Trainer.get_init_arguments_and_types` now returns arg types wrapped in tuples (not in sets) * deprecated args are now ignored in argparser * get_deprecated_arg_names small refactor * get_deprecated_arg_names bug fixed * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Joe Davison <joe@huggingface.co> * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Joe Davison <joe@huggingface.co> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Joe Davison <joe@huggingface.co> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-03-24 18:55:27 +00:00
def __init__(self, in_ch: int, out_ch: int):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.net(x)
class Down(nn.Module):
"""
Combination of MaxPool2d and DoubleConv in series
"""
Custom argparser extension with Trainer arguments (argument types added) (#1147) * `add_argparse_args` method fixed (argument types added) * CHANGELOG.md upd * autopep8 fixes * --gpus=0 removed from test (for ci tests) * typo fixed * reduce on plateau scheduler fixed * Trainer cli related tests moved to test_trainer_cli.py * refactored: get_init_arguments_and_types is a public classmethod of the Trainer now * test_get_init_arguments_and_types added * autopep8 fixes * Trainer cli related tests moved to test_trainer_cli.py * refactored: get_init_arguments_and_types is a public classmethod of the Trainer now * test_get_init_arguments_and_types added * autopep8 fixes * Trainer cli related tests moved to test_trainer_cli.py * refactored: get_init_arguments_and_types is a public classmethod of the Trainer now * test_get_init_arguments_and_types added * autopep8 fixes * Trainer cli related tests moved to test_trainer_cli.py * test_get_init_arguments_and_types added * autopep8 fixes * Apply suggestions from code review * cosmetics * cosmetics * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * `Trainer.get_init_arguments_and_types` now returns arg types wrapped in tuples (not in sets) * deprecated args are now ignored in argparser * get_deprecated_arg_names small refactor * get_deprecated_arg_names bug fixed * Trainer cli related tests moved to test_trainer_cli.py * refactored: get_init_arguments_and_types is a public classmethod of the Trainer now * test_get_init_arguments_and_types added * autopep8 fixes * Trainer cli related tests moved to test_trainer_cli.py * autopep8 fixes * Trainer cli related tests moved to test_trainer_cli.py * Trainer cli related tests moved to test_trainer_cli.py * test_get_init_arguments_and_types added * autopep8 fixes * autopep8 fixes * Apply suggestions from code review * cosmetics * cosmetics * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * `Trainer.get_init_arguments_and_types` now returns arg types wrapped in tuples (not in sets) * deprecated args are now ignored in argparser * get_deprecated_arg_names small refactor * get_deprecated_arg_names bug fixed * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Joe Davison <joe@huggingface.co> * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Joe Davison <joe@huggingface.co> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Joe Davison <joe@huggingface.co> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-03-24 18:55:27 +00:00
def __init__(self, in_ch: int, out_ch: int):
super().__init__()
self.net = nn.Sequential(
nn.MaxPool2d(kernel_size=2, stride=2),
DoubleConv(in_ch, out_ch)
)
def forward(self, x):
return self.net(x)
class Up(nn.Module):
"""
Upsampling (by either bilinear interpolation or transpose convolutions)
followed by concatenation of feature map from contracting path,
followed by double 3x3 convolution.
"""
Custom argparser extension with Trainer arguments (argument types added) (#1147) * `add_argparse_args` method fixed (argument types added) * CHANGELOG.md upd * autopep8 fixes * --gpus=0 removed from test (for ci tests) * typo fixed * reduce on plateau scheduler fixed * Trainer cli related tests moved to test_trainer_cli.py * refactored: get_init_arguments_and_types is a public classmethod of the Trainer now * test_get_init_arguments_and_types added * autopep8 fixes * Trainer cli related tests moved to test_trainer_cli.py * refactored: get_init_arguments_and_types is a public classmethod of the Trainer now * test_get_init_arguments_and_types added * autopep8 fixes * Trainer cli related tests moved to test_trainer_cli.py * refactored: get_init_arguments_and_types is a public classmethod of the Trainer now * test_get_init_arguments_and_types added * autopep8 fixes * Trainer cli related tests moved to test_trainer_cli.py * test_get_init_arguments_and_types added * autopep8 fixes * Apply suggestions from code review * cosmetics * cosmetics * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * `Trainer.get_init_arguments_and_types` now returns arg types wrapped in tuples (not in sets) * deprecated args are now ignored in argparser * get_deprecated_arg_names small refactor * get_deprecated_arg_names bug fixed * Trainer cli related tests moved to test_trainer_cli.py * refactored: get_init_arguments_and_types is a public classmethod of the Trainer now * test_get_init_arguments_and_types added * autopep8 fixes * Trainer cli related tests moved to test_trainer_cli.py * autopep8 fixes * Trainer cli related tests moved to test_trainer_cli.py * Trainer cli related tests moved to test_trainer_cli.py * test_get_init_arguments_and_types added * autopep8 fixes * autopep8 fixes * Apply suggestions from code review * cosmetics * cosmetics * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * `Trainer.get_init_arguments_and_types` now returns arg types wrapped in tuples (not in sets) * deprecated args are now ignored in argparser * get_deprecated_arg_names small refactor * get_deprecated_arg_names bug fixed * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Joe Davison <joe@huggingface.co> * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Joe Davison <joe@huggingface.co> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Joe Davison <joe@huggingface.co> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-03-24 18:55:27 +00:00
def __init__(self, in_ch: int, out_ch: int, bilinear: bool = False):
super().__init__()
self.upsample = None
if bilinear:
2020-05-26 13:28:17 +00:00
self.upsample = nn.Sequential(
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
nn.Conv2d(in_ch, in_ch // 2, kernel_size=1),
)
else:
self.upsample = nn.ConvTranspose2d(in_ch, in_ch // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_ch, out_ch)
def forward(self, x1, x2):
x1 = self.upsample(x1)
# Pad x1 to the size of x2
diff_h = x2.shape[2] - x1.shape[2]
diff_w = x2.shape[3] - x1.shape[3]
x1 = F.pad(x1, [diff_w // 2, diff_w - diff_w // 2, diff_h // 2, diff_h - diff_h // 2])
# Concatenate along the channels axis
x = torch.cat([x2, x1], dim=1)
return self.conv(x)