- Fixed number batches in case of multiple dataloaders and `limit_{*}_batches` ([#1920](https://github.com/PyTorchLightning/pytorch-lightning/pull/1920), [#2226](https://github.com/PyTorchLightning/pytorch-lightning/pull/2226))
- Added `overfit_batches`, `limit_{val|test}_batches` flags (overfit now uses training set for all three) ([#2213](https://github.com/PyTorchLightning/pytorch-lightning/pull/2213))
* Base classes ([#1326](https://github.com/PyTorchLightning/pytorch-lightning/pull/1326), [#1877](https://github.com/PyTorchLightning/pytorch-lightning/pull/1877))
* docs for all Metrics ([#2184](https://github.com/PyTorchLightning/pytorch-lightning/pull/2184), [#2209](https://github.com/PyTorchLightning/pytorch-lightning/pull/2209))
- Added type hints in `Trainer.fit()` and `Trainer.test()` to reflect that also a list of dataloaders can be passed in ([#1723](https://github.com/PyTorchLightning/pytorch-lightning/pull/1723))
- Allow dataloaders without sampler field present ([#1907](https://github.com/PyTorchLightning/pytorch-lightning/pull/1907))
- Added option `save_last` to save the model at the end of every epoch in `ModelCheckpoint` [(#1908)](https://github.com/PyTorchLightning/pytorch-lightning/pull/1908)
- Early stopping checks `on_validation_end` ([#1458](https://github.com/PyTorchLightning/pytorch-lightning/pull/1458))
- Attribute `best_model_path` to `ModelCheckpoint` for storing and later retrieving the path to the best saved model file ([#1799](https://github.com/PyTorchLightning/pytorch-lightning/pull/1799))
- Added a model hook `transfer_batch_to_device` that enables moving custom data structures to the target device ([1756](https://github.com/PyTorchLightning/pytorch-lightning/pull/1756))
- Added [black](https://black.readthedocs.io/en/stable/) formatter for the code with code-checker on pull ([1610](https://github.com/PyTorchLightning/pytorch-lightning/pull/1610))
- Added a callback method `on_keyboard_interrupt` for handling KeyboardInterrupt events during training ([#2134](https://github.com/PyTorchLightning/pytorch-lightning/pull/2134))
- Added a decorator `auto_move_data` that moves data to the correct device when using the LightningModule for inference ([#1905](https://github.com/PyTorchLightning/pytorch-lightning/pull/1905))
- Renamed `ModelCheckpoint`'s attributes `best` to `best_model_score` and `kth_best_model` to `kth_best_model_path` ([#1799](https://github.com/PyTorchLightning/pytorch-lightning/pull/1799))
- Changed the default value of the Trainer argument `weights_summary` from `full` to `top` ([#2029](https://github.com/PyTorchLightning/pytorch-lightning/pull/2029))
- Enabled `prepare_data` from correct processes - clarify local vs global rank ([#2166](https://github.com/PyTorchLightning/pytorch-lightning/pull/2166))
- Deprecated Trainer `proc_rank` in favour of `global_rank` ([#2166](https://github.com/PyTorchLightning/pytorch-lightning/pull/2166), [#2269](https://github.com/PyTorchLightning/pytorch-lightning/pull/2269))
- Removed unintended Trainer argument `progress_bar_callback`, the callback should be passed in by `Trainer(callbacks=[...])` instead ([#1855](https://github.com/PyTorchLightning/pytorch-lightning/pull/1855))
- Fixed user warning when apex was used together with learning rate schedulers ([#1873](https://github.com/PyTorchLightning/pytorch-lightning/pull/1873))
- Fixed an issue with `Trainer.from_argparse_args` when passing in unknown Trainer args ([#1932](https://github.com/PyTorchLightning/pytorch-lightning/pull/1932))
- Fixed bug related to logger not being reset correctly for model after tuner algorithms ([#1933](https://github.com/PyTorchLightning/pytorch-lightning/pull/1933))
- Fixed an issue with `_auto_collect_arguments` collecting local variables that are not constructor arguments and not working for signatures that have the instance not named `self` ([#2048](https://github.com/PyTorchLightning/pytorch-lightning/pull/2048))
- Fixed an issue with the model summary and `example_input_array` depending on a specific ordering of the submodules in a LightningModule ([#1773](https://github.com/PyTorchLightning/pytorch-lightning/pull/1773))
- Added transfer learning example (for a binary classification task in computer vision) ([#1564](https://github.com/PyTorchLightning/pytorch-lightning/pull/1564))
- Added type hints in `Trainer.fit()` and `Trainer.test()` to reflect that also a list of dataloaders can be passed in ([#1723](https://github.com/PyTorchLightning/pytorch-lightning/pull/1723)).
- Added option to provide seed to random generators to ensure reproducibility ([#1572](https://github.com/PyTorchLightning/pytorch-lightning/pull/1572))
- Added support multi-node distributed execution under `torchelastic` ([#1811](https://github.com/PyTorchLightning/pytorch-lightning/pull/1811), [#1818](https://github.com/PyTorchLightning/pytorch-lightning/pull/1818))
- Added using `store_true` for bool args ([#1822](https://github.com/PyTorchLightning/pytorch-lightning/pull/1822), [#1842](https://github.com/PyTorchLightning/pytorch-lightning/pull/1842))
- Added dummy logger for internally disabling logging for some features ([#1836](https://github.com/PyTorchLightning/pytorch-lightning/pull/1836))
- Don't convert `namedtuple` to `tuple` when transferring the batch to target device ([#1589](https://github.com/PyTorchLightning/pytorch-lightning/pull/1589))
- Allow passing hparams as keyword argument to LightningModule when loading from checkpoint ([#1639](https://github.com/PyTorchLightning/pytorch-lightning/pull/1639))
- Fixed bugs that prevent lr finder to be used together with early stopping and validation dataloaders ([#1676](https://github.com/PyTorchLightning/pytorch-lightning/pull/1676))
- Fixed a bug in Trainer that prepended the checkpoint path with `version_` when it shouldn't ([#1748](https://github.com/PyTorchLightning/pytorch-lightning/pull/1748))
- Fixed accumulation parameter and suggestion method for learning rate finder ([#1801](https://github.com/PyTorchLightning/pytorch-lightning/pull/1801))
- Fixed num processes wasn't being set properly and auto sampler was ddp failing ([#1819](https://github.com/PyTorchLightning/pytorch-lightning/pull/1819))
- Fixed bugs in semantic segmentation example ([#1824](https://github.com/PyTorchLightning/pytorch-lightning/pull/1824))
- Added flag `replace_sampler_ddp` to manually disable sampler replacement in DDP ([#1513](https://github.com/PyTorchLightning/pytorch-lightning/pull/1513))
- Added `auto_select_gpus` flag to trainer that enables automatic selection of available GPUs on exclusive mode systems.
- Added learning rate finder ([#1347](https://github.com/PyTorchLightning/pytorch-lightning/pull/1347))
- Added support for ddp mode in clusters without SLURM ([#1387](https://github.com/PyTorchLightning/pytorch-lightning/pull/1387))
- Added `test_dataloaders` parameter to `Trainer.test()` ([#1434](https://github.com/PyTorchLightning/pytorch-lightning/pull/1434))
- Added `terminate_on_nan` flag to trainer that performs a NaN check with each training iteration when set to `True` ([#1475](https://github.com/PyTorchLightning/pytorch-lightning/pull/1475))
- Added `terminate_on_nan` flag to trainer that performs a NaN check with each training iteration when set to `True`. ([#1475](https://github.com/PyTorchLightning/pytorch-lightning/pull/1475))
- Added [Horovod](http://horovod.ai) support as a distributed backend `Trainer(distributed_backend='horovod')` ([#1529](https://github.com/PyTorchLightning/pytorch-lightning/pull/1529))
- Added support for native AMP ([#1561](https://github.com/PyTorchLightning/pytorch-lightning/pull/1561), [#1580](https://github.com/PyTorchLightning/pytorch-lightning/pull/1580))
- Changed the default behaviour to no longer include a NaN check with each training iteration. ([#1475](https://github.com/PyTorchLightning/pytorch-lightning/pull/1475))
- Decoupled the progress bar from trainer` it is a callback now and can be customized or even be replaced entirely ([#1450](https://github.com/PyTorchLightning/pytorch-lightning/pull/1450)).
- Changed lr schedule step interval behavior to update every backwards pass instead of every forwards pass ([#1477](https://github.com/PyTorchLightning/pytorch-lightning/pull/1477))
- Fixed loggers - flushing last logged metrics even before continue, e.g. `trainer.test()` results ([#1459](https://github.com/PyTorchLightning/pytorch-lightning/pull/1459))
- Fixed a bug that caused the `callbacks` Trainer argument to reference a global variable ([#1534](https://github.com/PyTorchLightning/pytorch-lightning/pull/1534)).
- Fixed a bug that set all boolean CLI arguments from `Trainer.add_argparse_args` always to True ([#1571](https://github.com/PyTorchLightning/pytorch-lightning/pull/1571))
- Fixed do not copy the batch when training on a single GPU ([#1576](https://github.com/PyTorchLightning/pytorch-lightning/pull/1576), [#1579](https://github.com/PyTorchLightning/pytorch-lightning/pull/1579))
- Added support for `IterableDataset` in validation and testing ([#1104](https://github.com/PyTorchLightning/pytorch-lightning/pull/1104))
- Added support for non-primitive types in `hparams` for `TensorboardLogger` ([#1130](https://github.com/PyTorchLightning/pytorch-lightning/pull/1130))
- Added a check that stops the training when loss or weights contain `NaN` or `inf` values. ([#1097](https://github.com/PyTorchLightning/pytorch-lightning/pull/1097))
- Added support for `IterableDataset` when `val_check_interval=1.0` (default), this will trigger validation at the end of each epoch. ([#1283](https://github.com/PyTorchLightning/pytorch-lightning/pull/1283))
- Added `summary` method to Profilers. ([#1259](https://github.com/PyTorchLightning/pytorch-lightning/pull/1259))
- Added informative errors if user defined dataloader has zero length ([#1280](https://github.com/PyTorchLightning/pytorch-lightning/pull/1280))
- Added a `training_epoch_end` method which is the mirror of `validation_epoch_end`. ([#1357](https://github.com/PyTorchLightning/pytorch-lightning/pull/1357))
- Added model configuration checking ([#1199](https://github.com/PyTorchLightning/pytorch-lightning/pull/1199))
- Added support for optimizer frequencies through `LightningModule.configure_optimizers()` ([#1269](https://github.com/PyTorchLightning/pytorch-lightning/pull/1269))
- Added option to run without an optimizer by returning `None` from `configure_optimizers`. ([#1279](https://github.com/PyTorchLightning/pytorch-lightning/pull/1279))
- Changed `progress_bar_refresh_rate` trainer flag to disable progress bar when set to 0. ([#1108](https://github.com/PyTorchLightning/pytorch-lightning/pull/1108))
- Updated references to `self.forward()` to instead use the `__call__` interface. ([#1211](https://github.com/PyTorchLightning/pytorch-lightning/pull/1211))
- Changed default behaviour of `configure_optimizers` to use no optimizer rather than Adam. ([#1279](https://github.com/PyTorchLightning/pytorch-lightning/pull/1279))
- Did not always create a DataLoader during reinstantiation, but the same type as before (if subclass of DataLoader) ([#1346](https://github.com/PyTorchLightning/pytorch-lightning/pull/1346))
- Did not interfere with a default sampler ([#1318](https://github.com/PyTorchLightning/pytorch-lightning/pull/1318))
- Changed min max gpu memory to be on their own plots ([#1358](https://github.com/PyTorchLightning/pytorch-lightning/pull/1358))
- Remove `.item` which causes sync issues ([#1254](https://github.com/PyTorchLightning/pytorch-lightning/pull/1254))
- Changed smoothing in TQDM to decrease variability of time remaining between training / eval ([#1194](https://github.com/PyTorchLightning/pytorch-lightning/pull/1194))
- Change default logger to dedicated one ([#1064](https://github.com/PyTorchLightning/pytorch-lightning/pull/1064))
- Dropped `torchvision` dependency in tests and added own MNIST dataset class instead ([#986](https://github.com/PyTorchLightning/pytorch-lightning/pull/986))
- Fixed `model_checkpoint` when saving all models ([#1359](https://github.com/PyTorchLightning/pytorch-lightning/pull/1359))
-`Trainer.add_argparse_args` classmethod fixed. Now it adds a type for the arguments ([#1147](https://github.com/PyTorchLightning/pytorch-lightning/pull/1147))
- Fixed a bug that created an extra dataloader with active `reload_dataloaders_every_epoch` ([#1196](https://github.com/PyTorchLightning/pytorch-lightning/pull/1196))
- Fixed an issue with early stopping that would prevent it from monitoring training metrics when validation is disabled / not implemented ([#1235](https://github.com/PyTorchLightning/pytorch-lightning/pull/1235)).
- Fixed a bug that would cause `trainer.test()` to run on the validation set when overloading `validation_epoch_end` and `test_end` ([#1353](https://github.com/PyTorchLightning/pytorch-lightning/pull/1353))
- Fixed `WandbLogger.watch` - use of the watch method without importing `wandb` ([#1311](https://github.com/PyTorchLightning/pytorch-lightning/pull/1311))
- Fixed `WandbLogger` to be used with 'ddp' - allow reinits in sub-processes ([#1149](https://github.com/PyTorchLightning/pytorch-lightning/pull/1149), [#1360](https://github.com/PyTorchLightning/pytorch-lightning/pull/1360))
- Made `training_epoch_end` behave like `validation_epoch_end` ([#1357](https://github.com/PyTorchLightning/pytorch-lightning/pull/1357))
- Fixed Tensorboard logger error: lightning_logs directory not exists in multi-node DDP on nodes with rank != 0 ([#1377](https://github.com/PyTorchLightning/pytorch-lightning/pull/1377))
- Added automatic sampler setup. Depending on DDP or TPU, lightning configures the sampler correctly (user needs to do nothing) ([#926](https://github.com/PyTorchLightning/pytorch-lightning/pull/926))
- Added `reload_dataloaders_every_epoch=False` flag for trainer. Some users require reloading data every epoch ([#926](https://github.com/PyTorchLightning/pytorch-lightning/pull/926))
- Added `progress_bar_refresh_rate=50` flag for trainer. Throttle refresh rate on notebooks ([#926](https://github.com/PyTorchLightning/pytorch-lightning/pull/926))
- Added a check to ensure that the metric used for early stopping exists before training commences ([#542](https://github.com/PyTorchLightning/pytorch-lightning/pull/542))
- Added `optimizer_idx` argument to `backward` hook ([#733](https://github.com/PyTorchLightning/pytorch-lightning/pull/733))
- Added `entity` argument to `WandbLogger` to be passed to `wandb.init` ([#783](https://github.com/PyTorchLightning/pytorch-lightning/pull/783))
- Added a tool for profiling training runs ([#782](https://github.com/PyTorchLightning/pytorch-lightning/pull/782))
- Improved flexibility for naming of TensorBoard logs, can now set `version` to a `str` to just save to that directory, and use `name=''` to prevent experiment-name directory ([#804](https://github.com/PyTorchLightning/pytorch-lightning/pull/804))
- Added option to specify `step` key when logging metrics ([#808](https://github.com/PyTorchLightning/pytorch-lightning/pull/808))
- Added `train_dataloader`, `val_dataloader` and `test_dataloader` arguments to `Trainer.fit()`, for alternative data parsing ([#759](https://github.com/PyTorchLightning/pytorch-lightning/pull/759))
- Added Tensor Processing Unit (TPU) support ([#868](https://github.com/PyTorchLightning/pytorch-lightning/pull/868))
- Support for user defined callbacks ([#889](https://github.com/PyTorchLightning/pytorch-lightning/pull/889) and [#950](https://github.com/PyTorchLightning/pytorch-lightning/pull/950))
- Added support for multiple loggers to be passed to `Trainer` as an iterable (e.g. list, tuple, etc.) ([#903](https://github.com/PyTorchLightning/pytorch-lightning/pull/903))
- Checkpoint and early stopping now work without val. step ([#1041](https://github.com/PyTorchLightning/pytorch-lightning/pull/1041))
- Support graceful training cleanup after Keyboard Interrupt ([#856](https://github.com/PyTorchLightning/pytorch-lightning/pull/856), [#1019](https://github.com/PyTorchLightning/pytorch-lightning/pull/1019))
- Added type hints for function arguments ([#912](https://github.com/PyTorchLightning/pytorch-lightning/pull/912), )
- Added default `argparser` for `Trainer` ([#952](https://github.com/PyTorchLightning/pytorch-lightning/pull/1023), [#1023](https://github.com/PyTorchLightning/pytorch-lightning/pull/1023))
- Improved `NeptuneLogger` by adding `close_after_fit` argument to allow logging after training([#908](https://github.com/PyTorchLightning/pytorch-lightning/pull/1084))
- Changed default TQDM to use `tqdm.auto` for prettier outputs in IPython notebooks ([#752](https://github.com/PyTorchLightning/pytorch-lightning/pull/752))
- Changed `pytorch_lightning.logging` to `pytorch_lightning.loggers` ([#767](https://github.com/PyTorchLightning/pytorch-lightning/pull/767))
- Moved the default `tqdm_dict` definition from Trainer to `LightningModule`, so it can be overridden by the user ([#749](https://github.com/PyTorchLightning/pytorch-lightning/pull/749))
- Moved functionality of `LightningModule.load_from_metrics` into `LightningModule.load_from_checkpoint` ([#995](https://github.com/PyTorchLightning/pytorch-lightning/pull/995))
- Deprecated `LightningModule.load_from_metrics` in favour of `LightningModule.load_from_checkpoint` ([#995](https://github.com/PyTorchLightning/pytorch-lightning/pull/995), [#1079](https://github.com/PyTorchLightning/pytorch-lightning/pull/1079))
- Deprecated model steps `training_end`, `validation_end` and `test_end` ([#1051](https://github.com/PyTorchLightning/pytorch-lightning/pull/1051), [#1056](https://github.com/PyTorchLightning/pytorch-lightning/pull/1056))
- Fixed a bug where early stopping `on_end_epoch` would be called inconsistently when `check_val_every_n_epoch == 0` ([#743](https://github.com/PyTorchLightning/pytorch-lightning/pull/743))
- Fixed a bug where the model checkpointer didn't write to the same directory as the logger ([#771](https://github.com/PyTorchLightning/pytorch-lightning/pull/771))
- Fixed a bug where the `TensorBoardLogger` class would create an additional empty log file during fitting ([#777](https://github.com/PyTorchLightning/pytorch-lightning/pull/777))
- Fixed a bug where `global_step` was advanced incorrectly when using `accumulate_grad_batches > 1` ([#832](https://github.com/PyTorchLightning/pytorch-lightning/pull/832))
- Fixed a bug when calling `self.logger.experiment` with multiple loggers ([#1009](https://github.com/PyTorchLightning/pytorch-lightning/pull/1009))
- Fixed a bug when calling `logger.append_tags` on a `NeptuneLogger` with a single tag ([#1009](https://github.com/PyTorchLightning/pytorch-lightning/pull/1009))
- Fixed sending back data from `.spawn` by saving and loading the trained model in/out of the process ([#1017](https://github.com/PyTorchLightning/pytorch-lightning/pull/1017)
- Fixed port collision on DDP ([#1010](https://github.com/PyTorchLightning/pytorch-lightning/pull/1010))
- Added support for resuming from a specific checkpoint via `resume_from_checkpoint` argument ([#516](https://github.com/PyTorchLightning/pytorch-lightning/pull/516))
- Added support for `ReduceLROnPlateau` scheduler ([#320](https://github.com/PyTorchLightning/pytorch-lightning/pull/320))
- Added support for Apex mode `O2` in conjunction with Data Parallel ([#493](https://github.com/PyTorchLightning/pytorch-lightning/pull/493))
- Added option (`save_top_k`) to save the top k models in the `ModelCheckpoint` class ([#128](https://github.com/PyTorchLightning/pytorch-lightning/pull/128))
- Added `on_train_start` and `on_train_end` hooks to `ModelHooks` ([#598](https://github.com/PyTorchLightning/pytorch-lightning/pull/598))
- Added support for weight summary of model with multiple inputs ([#543](https://github.com/PyTorchLightning/pytorch-lightning/pull/543))
- Added `map_location` argument to `load_from_metrics` and `load_from_checkpoint` ([#625](https://github.com/PyTorchLightning/pytorch-lightning/pull/625))
- Added option to disable validation by setting `val_percent_check=0` ([#649](https://github.com/PyTorchLightning/pytorch-lightning/pull/649))
- Added `NeptuneLogger` class ([#648](https://github.com/PyTorchLightning/pytorch-lightning/pull/648))
- Added `WandbLogger` class ([#627](https://github.com/PyTorchLightning/pytorch-lightning/pull/627))
- Changed the default progress bar to print to stdout instead of stderr ([#531](https://github.com/PyTorchLightning/pytorch-lightning/pull/531))
- Renamed `step_idx` to `step`, `epoch_idx` to `epoch`, `max_num_epochs` to `max_epochs` and `min_num_epochs` to `min_epochs` ([#589](https://github.com/PyTorchLightning/pytorch-lightning/pull/589))
- Renamed `total_batch_nb` to `total_batches`, `nb_val_batches` to `num_val_batches`, `nb_training_batches` to `num_training_batches`, `max_nb_epochs` to `max_epochs`, `min_nb_epochs` to `min_epochs`, `nb_test_batches` to `num_test_batches`, and `nb_val_batches` to `num_val_batches` ([#567](https://github.com/PyTorchLightning/pytorch-lightning/pull/567))
- Changed gradient logging to use parameter names instead of indexes ([#660](https://github.com/PyTorchLightning/pytorch-lightning/pull/660))
- Changed the default logger to `TensorBoardLogger` ([#609](https://github.com/PyTorchLightning/pytorch-lightning/pull/609))
- Changed the directory for tensorboard logging to be the same as model checkpointing ([#706](https://github.com/PyTorchLightning/pytorch-lightning/pull/706))
- Removed the `save_best_only` argument from `ModelCheckpoint`, use `save_top_k=1` instead ([#128](https://github.com/PyTorchLightning/pytorch-lightning/pull/128))
- Fixed a bug which ocurred when using Adagrad with cuda ([#554](https://github.com/PyTorchLightning/pytorch-lightning/pull/554))
- Fixed a bug where training would be on the GPU despite setting `gpus=0` or `gpus=[]` ([#561](https://github.com/PyTorchLightning/pytorch-lightning/pull/561))
- Fixed an error with `print_nan_gradients` when some parameters do not require gradient ([#579](https://github.com/PyTorchLightning/pytorch-lightning/pull/579))
- Fixed a bug where the progress bar would show an incorrect number of total steps during the validation sanity check when using multiple validation data loaders ([#597](https://github.com/PyTorchLightning/pytorch-lightning/pull/597))
- Fixed support for PyTorch 1.1.0 ([#552](https://github.com/PyTorchLightning/pytorch-lightning/pull/552))
- Fixed an issue with early stopping when using a `val_check_interval < 1.0` in `Trainer` ([#492](https://github.com/PyTorchLightning/pytorch-lightning/pull/492))
- Fixed bugs relating to the `CometLogger` object that would cause it to not work properly ([#481](https://github.com/PyTorchLightning/pytorch-lightning/pull/481))
- Fixed a bug that would occur when returning `-1` from `on_batch_start` following an early exit or when the batch was `None` ([#509](https://github.com/PyTorchLightning/pytorch-lightning/pull/509))
- Fixed a potential race condition with several processes trying to create checkpoint directories ([#530](https://github.com/PyTorchLightning/pytorch-lightning/pull/530))
- Fixed a bug where batch 'segments' would remain on the GPU when using `truncated_bptt > 1` ([#532](https://github.com/PyTorchLightning/pytorch-lightning/pull/532))
- Fixed a bug when using `IterableDataset` ([#547](https://github.com/PyTorchLightning/pytorch-lightning/pull/547))
- Fixed a bug where `.item` was called on non-tensor objects ([#602](https://github.com/PyTorchLightning/pytorch-lightning/pull/602))
- Fixed a bug where `Trainer.train` would crash on an uninitialized variable if the trainer was run after resuming from a checkpoint that was already at `max_epochs` ([#608](https://github.com/PyTorchLightning/pytorch-lightning/pull/608))
- Fixed a bug where early stopping would begin two epochs early ([#617](https://github.com/PyTorchLightning/pytorch-lightning/pull/617))
- Fixed a bug where `num_training_batches` and `num_test_batches` would sometimes be rounded down to zero ([#649](https://github.com/PyTorchLightning/pytorch-lightning/pull/649))
- Fixed a bug where an additional batch would be processed when manually setting `num_training_batches` ([#653](https://github.com/PyTorchLightning/pytorch-lightning/pull/653))
- Fixed a bug when batches did not have a `.copy` method ([#701](https://github.com/PyTorchLightning/pytorch-lightning/pull/701))
- Fixed a bug when using `log_gpu_memory=True` in Python 3.6 ([#715](https://github.com/PyTorchLightning/pytorch-lightning/pull/715))
- Fixed a bug where checkpoint writing could exit before completion, giving incomplete checkpoints ([#689](https://github.com/PyTorchLightning/pytorch-lightning/pull/689))
- Fixed a bug where `on_train_end` was not called when ealy stopping ([#723](https://github.com/PyTorchLightning/pytorch-lightning/pull/723))
- Added option to disable default logger, checkpointer, and early stopping by passing `logger=False`, `checkpoint_callback=False` and `early_stop_callback=False` respectively
- Added `CometLogger` for use with Comet.ml
- Added `val_check_interval` argument to `Trainer` allowing validition to be performed at every given number of batches
- Added functionality to save and load hyperparameters using the standard checkpoint mechanism
- Added call to `torch.cuda.empty_cache` before training starts
- Added option for user to override the call t `backward`
- Changed functionality of `validation_end` and `test_end` with multiple dataloaders to be given all of the dataloaders at once rather than in seperate calls
- Changed print_nan_grads to only print the parameter value and gradients when they contain NaN
- Changed gpu API to take integers as well (e.g. `gpus=2` instead of `gpus=[0, 1]`)
- All models now loaded on to CPU to avoid device and out of memory issues in PyTorch
- Fixed a bug where an `Exception` would be thrown if using `torch.DistributedDataParallel` without using a `DistributedSampler`, this now throws a `Warning` instead