feat(wandb): save models on wandb (#1339)

* feat(wandb): save models on wandb

* docs(changelog): allow to upload models on W&B
This commit is contained in:
Boris Dayma 2020-04-02 07:55:34 -05:00 committed by GitHub
parent 04935ea718
commit 6b41b5c589
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 8 additions and 1 deletions

View File

@ -21,6 +21,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Added support for `IterableDataset` when `val_check_interval=1.0` (default), this will trigger validation at the end of each epoch. ([#1283](https://github.com/PyTorchLightning/pytorch-lightning/pull/1283))
- Added `summary` method to Profilers. ([#1259](https://github.com/PyTorchLightning/pytorch-lightning/pull/1259))
- Added informative errors if user defined dataloader has zero length ([#1280](https://github.com/PyTorchLightning/pytorch-lightning/pull/1280))
- Allow to upload models on W&B ([#1339](https://github.com/PyTorchLightning/pytorch-lightning/pull/1339))
### Changed

View File

@ -33,6 +33,7 @@ class WandbLogger(LightningLoggerBase):
anonymous (bool): enables or explicitly disables anonymous logging.
project (str): the name of the project to which this run will belong.
tags (list of str): tags associated with this run.
log_model (bool): save checkpoints in wandb dir to upload on W&B servers.
Example
--------
@ -48,7 +49,8 @@ class WandbLogger(LightningLoggerBase):
def __init__(self, name: Optional[str] = None, save_dir: Optional[str] = None,
offline: bool = False, id: Optional[str] = None, anonymous: bool = False,
version: Optional[str] = None, project: Optional[str] = None,
tags: Optional[List[str]] = None, experiment=None, entity=None):
tags: Optional[List[str]] = None, log_model: bool = False,
experiment=None, entity=None):
super().__init__()
self._name = name
self._save_dir = save_dir
@ -59,6 +61,7 @@ class WandbLogger(LightningLoggerBase):
self._experiment = experiment
self._offline = offline
self._entity = entity
self._log_model = log_model
def __getstate__(self):
state = self.__dict__.copy()
@ -85,6 +88,9 @@ class WandbLogger(LightningLoggerBase):
self._experiment = wandb.init(
name=self._name, dir=self._save_dir, project=self._project, anonymous=self._anonymous,
id=self._id, resume='allow', tags=self._tags, entity=self._entity)
# save checkpoints in wandb dir to upload on W&B servers
if self._log_model:
self.save_dir = self._experiment.dir
return self._experiment
def watch(self, model: nn.Module, log: str = 'gradients', log_freq: int = 100):