2019-07-25 16:01:52 +00:00
|
|
|
import torch
|
|
|
|
from torch.nn import functional as F
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
from torchvision.datasets import MNIST
|
2019-10-22 08:32:40 +00:00
|
|
|
|
|
|
|
import pytorch_lightning as pl
|
|
|
|
|
|
|
|
|
2019-10-06 21:57:23 +00:00
|
|
|
# from test_models import assert_ok_test_acc, load_model, \
|
2019-10-10 19:16:19 +00:00
|
|
|
# clear_save_dir, get_test_tube_logger, get_hparams, init_save_dir, \
|
|
|
|
# init_checkpoint_callback, reset_seed, set_random_master_port
|
2019-07-25 16:01:52 +00:00
|
|
|
|
|
|
|
|
2019-08-07 06:02:55 +00:00
|
|
|
class CoolModel(pl.LightningModule):
|
2019-07-25 16:01:52 +00:00
|
|
|
|
|
|
|
def __init(self):
|
|
|
|
super(CoolModel, self).__init__()
|
|
|
|
# not the best model...
|
|
|
|
self.l1 = torch.nn.Linear(28 * 28, 10)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return torch.relu(self.l1(x))
|
|
|
|
|
|
|
|
def my_loss(self, y_hat, y):
|
|
|
|
return F.cross_entropy(y_hat, y)
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_nb):
|
|
|
|
x, y = batch
|
|
|
|
y_hat = self.forward(x)
|
2019-09-25 23:05:06 +00:00
|
|
|
return {'training_loss': self.my_loss(y_hat, y)}
|
2019-07-25 16:01:52 +00:00
|
|
|
|
|
|
|
def validation_step(self, batch, batch_nb):
|
|
|
|
x, y = batch
|
|
|
|
y_hat = self.forward(x)
|
|
|
|
return {'val_loss': self.my_loss(y_hat, y)}
|
|
|
|
|
|
|
|
def validation_end(self, outputs):
|
|
|
|
avg_loss = torch.stack([x for x in outputs['val_loss']]).mean()
|
|
|
|
return avg_loss
|
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
return [torch.optim.Adam(self.parameters(), lr=0.02)]
|
|
|
|
|
2019-08-07 06:02:55 +00:00
|
|
|
@pl.data_loader
|
2019-09-25 23:05:06 +00:00
|
|
|
def train_dataloader(self):
|
2019-07-25 16:01:52 +00:00
|
|
|
return DataLoader(MNIST('path/to/save', train=True), batch_size=32)
|
|
|
|
|
2019-08-07 06:02:55 +00:00
|
|
|
@pl.data_loader
|
2019-07-25 16:01:52 +00:00
|
|
|
def val_dataloader(self):
|
|
|
|
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
|
|
|
|
|
2019-08-07 06:02:55 +00:00
|
|
|
@pl.data_loader
|
2019-07-25 16:01:52 +00:00
|
|
|
def test_dataloader(self):
|
|
|
|
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
|
2019-10-10 19:16:19 +00:00
|
|
|
|
2019-10-06 21:57:23 +00:00
|
|
|
#
|
|
|
|
# def main():
|
2019-10-10 19:16:19 +00:00
|
|
|
# reset_seed()
|
|
|
|
# set_random_master_port()
|
|
|
|
#
|
2019-10-06 21:57:23 +00:00
|
|
|
# hparams = get_hparams()
|
|
|
|
# model = LightningTestModel(hparams)
|
|
|
|
#
|
|
|
|
# save_dir = init_save_dir()
|
|
|
|
#
|
2019-10-10 19:16:19 +00:00
|
|
|
# # exp file to get meta
|
2019-10-06 21:57:23 +00:00
|
|
|
# logger = get_test_tube_logger(False)
|
|
|
|
#
|
2019-10-10 19:16:19 +00:00
|
|
|
# print(logger.debug)
|
|
|
|
#
|
|
|
|
# # exp file to get weights
|
|
|
|
# checkpoint = init_checkpoint_callback(logger)
|
2019-10-06 21:57:23 +00:00
|
|
|
#
|
|
|
|
# trainer_options = dict(
|
2019-10-10 19:16:19 +00:00
|
|
|
# show_progress_bar=False,
|
2019-10-06 21:57:23 +00:00
|
|
|
# max_nb_epochs=1,
|
|
|
|
# train_percent_check=0.4,
|
|
|
|
# val_percent_check=0.2,
|
|
|
|
# checkpoint_callback=checkpoint,
|
|
|
|
# logger=logger,
|
|
|
|
# gpus=[0, 1],
|
2019-10-10 19:16:19 +00:00
|
|
|
# distributed_backend='ddp'
|
2019-10-06 21:57:23 +00:00
|
|
|
# )
|
|
|
|
#
|
|
|
|
# # fit model
|
|
|
|
# trainer = Trainer(**trainer_options)
|
|
|
|
# result = trainer.fit(model)
|
|
|
|
#
|
2019-10-10 19:16:19 +00:00
|
|
|
# exp = logger.experiment
|
|
|
|
# print(os.listdir(exp.get_data_path(exp.name, exp.version)))
|
|
|
|
#
|
2019-10-06 21:57:23 +00:00
|
|
|
# # correct result and ok accuracy
|
|
|
|
# assert result == 1, 'training failed to complete'
|
2019-10-10 19:16:19 +00:00
|
|
|
# pretrained_model = load_model(logger.experiment, save_dir,
|
|
|
|
# module_class=LightningTestModel)
|
2019-10-06 21:57:23 +00:00
|
|
|
#
|
2019-10-10 19:16:19 +00:00
|
|
|
# # run test set
|
2019-10-06 21:57:23 +00:00
|
|
|
# new_trainer = Trainer(**trainer_options)
|
|
|
|
# new_trainer.test(pretrained_model)
|
|
|
|
#
|
|
|
|
# # test we have good test accuracy
|
|
|
|
# clear_save_dir()
|
2019-10-10 19:16:19 +00:00
|
|
|
#
|
2019-10-06 21:57:23 +00:00
|
|
|
# if __name__ == '__main__':
|
|
|
|
# main()
|