lightning/tests/debug.py

106 lines
2.9 KiB
Python

import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
import pytorch_lightning as pl
# from test_models import assert_ok_test_acc, load_model, \
# clear_save_dir, get_test_tube_logger, get_hparams, init_save_dir, \
# init_checkpoint_callback, reset_seed, set_random_master_port
class CoolModel(pl.LightningModule):
def __init(self):
super(CoolModel, self).__init__()
# not the best model...
self.l1 = torch.nn.Linear(28 * 28, 10)
def forward(self, x):
return torch.relu(self.l1(x))
def my_loss(self, y_hat, y):
return F.cross_entropy(y_hat, y)
def training_step(self, batch, batch_nb):
x, y = batch
y_hat = self.forward(x)
return {'training_loss': self.my_loss(y_hat, y)}
def validation_step(self, batch, batch_nb):
x, y = batch
y_hat = self.forward(x)
return {'val_loss': self.my_loss(y_hat, y)}
def validation_end(self, outputs):
avg_loss = torch.stack([x for x in outputs['val_loss']]).mean()
return avg_loss
def configure_optimizers(self):
return [torch.optim.Adam(self.parameters(), lr=0.02)]
@pl.data_loader
def train_dataloader(self):
return DataLoader(MNIST('path/to/save', train=True), batch_size=32)
@pl.data_loader
def val_dataloader(self):
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
@pl.data_loader
def test_dataloader(self):
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
#
# def main():
# reset_seed()
# set_random_master_port()
#
# hparams = get_hparams()
# model = LightningTestModel(hparams)
#
# save_dir = init_save_dir()
#
# # exp file to get meta
# logger = get_test_tube_logger(False)
#
# print(logger.debug)
#
# # exp file to get weights
# checkpoint = init_checkpoint_callback(logger)
#
# trainer_options = dict(
# show_progress_bar=False,
# max_nb_epochs=1,
# train_percent_check=0.4,
# val_percent_check=0.2,
# checkpoint_callback=checkpoint,
# logger=logger,
# gpus=[0, 1],
# distributed_backend='ddp'
# )
#
# # fit model
# trainer = Trainer(**trainer_options)
# result = trainer.fit(model)
#
# exp = logger.experiment
# print(os.listdir(exp.get_data_path(exp.name, exp.version)))
#
# # correct result and ok accuracy
# assert result == 1, 'training failed to complete'
# pretrained_model = load_model(logger.experiment, save_dir,
# module_class=LightningTestModel)
#
# # run test set
# new_trainer = Trainer(**trainer_options)
# new_trainer.test(pretrained_model)
#
# # test we have good test accuracy
# clear_save_dir()
#
# if __name__ == '__main__':
# main()