updated docs
This commit is contained in:
parent
4562580461
commit
b0d38d532d
|
@ -8,9 +8,8 @@ from pytorch_lightning.root_module.decorators import data_loader
|
|||
|
||||
class LightningModule(GradInformation, ModelIO, ModelHooks):
|
||||
|
||||
def __init__(self, hparams):
|
||||
def __init__(self):
|
||||
super(LightningModule, self).__init__()
|
||||
self.hparams = hparams
|
||||
|
||||
self.dtype = torch.FloatTensor
|
||||
self.exp_save_path = None
|
||||
|
@ -64,18 +63,6 @@ class LightningModule(GradInformation, ModelIO, ModelHooks):
|
|||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def summarize(self):
|
||||
model_summary = ModelSummary(self)
|
||||
print(model_summary)
|
||||
|
||||
def freeze(self):
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def unfreeze(self):
|
||||
for param in self.parameters():
|
||||
param.requires_grad = True
|
||||
|
||||
@data_loader
|
||||
def tng_dataloader(self):
|
||||
"""
|
||||
|
@ -128,5 +115,17 @@ class LightningModule(GradInformation, ModelIO, ModelHooks):
|
|||
model.load_state_dict(checkpoint['state_dict'], strict=False)
|
||||
return model
|
||||
|
||||
def summarize(self):
|
||||
model_summary = ModelSummary(self)
|
||||
print(model_summary)
|
||||
|
||||
def freeze(self):
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def unfreeze(self):
|
||||
for param in self.parameters():
|
||||
param.requires_grad = True
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -11,6 +11,55 @@ import os
|
|||
import shutil
|
||||
import pdb
|
||||
|
||||
import pytorch_lightning as ptl
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision.datasets import MNIST
|
||||
|
||||
|
||||
class CoolModel(ptl.LightningModule):
|
||||
|
||||
def __init(self):
|
||||
super(CoolModel, self).__init__()
|
||||
# not the best model...
|
||||
self.l1 = torch.nn.Linear(28 * 28, 10)
|
||||
|
||||
def forward(self, x):
|
||||
return torch.relu(self.l1(x))
|
||||
|
||||
def my_loss(self, y_hat, y):
|
||||
return F.cross_entropy(y_hat, y)
|
||||
|
||||
def training_step(self, batch, batch_nb):
|
||||
x, y = batch
|
||||
y_hat = self.forward(x)
|
||||
return {'tng_loss': self.my_loss(y_hat, y)}
|
||||
|
||||
def validation_step(self, batch, batch_nb):
|
||||
x, y = batch
|
||||
y_hat = self.forward(x)
|
||||
return {'val_loss': self.my_loss(y_hat, y)}
|
||||
|
||||
def validation_end(self, outputs):
|
||||
avg_loss = torch.stack([x for x in outputs['val_loss']]).mean()
|
||||
return avg_loss
|
||||
|
||||
def configure_optimizers(self):
|
||||
return [torch.optim.Adam(self.parameters(), lr=0.02)]
|
||||
|
||||
@ptl.data_loader
|
||||
def tng_dataloader(self):
|
||||
return DataLoader(MNIST('path/to/save', train=True), batch_size=32)
|
||||
|
||||
@ptl.data_loader
|
||||
def val_dataloader(self):
|
||||
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
|
||||
|
||||
@ptl.data_loader
|
||||
def test_dataloader(self):
|
||||
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
|
||||
|
||||
|
||||
def get_model():
|
||||
# set up model with these hyperparams
|
||||
|
@ -94,11 +143,9 @@ def run_prediction(dataloader, trained_model):
|
|||
def main():
|
||||
|
||||
save_dir = init_save_dir()
|
||||
model, hparams = get_model()
|
||||
|
||||
# exp file to get meta
|
||||
exp = get_exp(False)
|
||||
exp.argparse(hparams)
|
||||
exp.save()
|
||||
|
||||
# exp file to get weights
|
||||
|
@ -113,6 +160,8 @@ def main():
|
|||
distributed_backend='dp',
|
||||
)
|
||||
|
||||
model = CoolModel()
|
||||
|
||||
result = trainer.fit(model)
|
||||
|
||||
# correct result and ok accuracy
|
||||
|
|
Loading…
Reference in New Issue