lightning/README.md

354 lines
18 KiB
Markdown
Raw Normal View History

2019-08-06 20:37:58 +00:00
<div align="center">
<img src="docs/source/_images/logos/lightning_logo-name.png" width="400px">
2019-03-31 19:32:35 +00:00
2019-08-05 20:02:48 +00:00
2020-10-08 11:27:13 +00:00
**The lightweight PyTorch wrapper for high-performance AI research.
2020-10-08 11:20:43 +00:00
Scale your models, not the boilerplate.**
2019-08-05 20:02:48 +00:00
2020-10-08 11:28:32 +00:00
---
<p align="center">
2020-10-08 13:17:51 +00:00
<a href="https://www.pytorchlightning.ai/">Website</a>
<a href="#key-features">Key Features</a>
<a href="#how-to-use">How To Use</a>
2020-09-21 20:31:54 +00:00
<a href="https://pytorch-lightning.readthedocs.io/en/stable/">Docs</a>
2020-09-21 20:34:55 +00:00
<a href="#examples">Examples</a>
<a href="#community">Community</a>
2020-10-11 18:20:07 +00:00
<a href="#grid-ai">Grid AI</a>
<a href="#licence">Licence</a>
</p>
2020-09-15 18:32:27 +00:00
<!-- DO NOT ADD CONDA DOWNLOADS... README CHANGES MUST BE APPROVED BY EDEN OR WILL -->
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pytorch-lightning)](https://pypi.org/project/pytorch-lightning/)
2019-08-05 20:02:48 +00:00
[![PyPI Status](https://badge.fury.io/py/pytorch-lightning.svg)](https://badge.fury.io/py/pytorch-lightning)
2019-08-18 23:17:25 +00:00
[![PyPI Status](https://pepy.tech/badge/pytorch-lightning)](https://pepy.tech/project/pytorch-lightning)
[![Conda](https://img.shields.io/conda/v/conda-forge/pytorch-lightning?label=conda&color=success)](https://anaconda.org/conda-forge/pytorch-lightning)
2020-08-14 20:05:53 +00:00
[![DockerHub](https://img.shields.io/docker/pulls/pytorchlightning/pytorch_lightning.svg)](https://hub.docker.com/r/pytorchlightning/pytorch_lightning)
[![codecov](https://codecov.io/gh/PyTorchLightning/pytorch-lightning/branch/master/graph/badge.svg)](https://codecov.io/gh/PyTorchLightning/pytorch-lightning)
2020-04-27 21:41:46 +00:00
[![ReadTheDocs](https://readthedocs.org/projects/pytorch-lightning/badge/?version=stable)](https://pytorch-lightning.readthedocs.io/en/stable/)
2020-06-17 19:56:19 +00:00
[![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A)
[![Discourse status](https://img.shields.io/discourse/status?server=https%3A%2F%2Fforums.pytorchlightning.ai)](https://forums.pytorchlightning.ai/)
2020-01-14 12:05:26 +00:00
[![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/PytorchLightning/pytorch-lightning/blob/master/LICENSE)
2020-10-13 12:21:27 +00:00
[![Next Release](https://img.shields.io/badge/Next%20Release-Nov%2021-<COLOR>.svg)](https://shields.io/)
2019-10-06 16:20:13 +00:00
<!--
[![CodeFactor](https://www.codefactor.io/repository/github/pytorchlightning/pytorch-lightning/badge)](https://www.codefactor.io/repository/github/pytorchlightning/pytorch-lightning)
-->
2019-08-06 20:37:58 +00:00
</div>
2019-08-05 20:02:48 +00:00
###### *Codecov is > 90%+ but build delays may show less
2020-09-21 21:04:05 +00:00
---
## PyTorch Lightning is just organized PyTorch
2020-09-21 20:42:38 +00:00
Lightning disentangles PyTorch code to decouple the science from the engineering.
![PT to PL](/docs/source/_images/general/pl_quick_start_full_compressed.gif)
2020-09-21 20:42:38 +00:00
---
## Lightning Philosophy
Lightning is designed with these principles in mind:
2020-09-21 20:45:25 +00:00
Principle 1: Enable maximal flexibility.
Principle 2: Abstract away unecessary boilerplate, but make it accessible when needed.
Principle 3: Systems should be self-contained (ie: optimizers, computation code, etc).
Principle 4: Deep learning code should be organized into 4 distinct categories.
2020-09-21 20:44:44 +00:00
- Research code (the LightningModule).
- Engineering code (you delete, and is handled by the Trainer).
- Non-essential research code (logging, etc... this goes in Callbacks).
- Data (use PyTorch Dataloaders or organize them into a LightningDataModule).
Once you do this, you can train on multiple-GPUs, TPUs, CPUs and even in 16-bit precision without changing your code!
Get started with our [2 step guide](https://pytorch-lightning.readthedocs.io/en/stable/new-project.html)
---
2020-10-08 11:27:13 +00:00
## Inference
Lightning is also designed for the fast inference AI researchers and production teams need to scale up things like BERT and self-supervised learning.
Lightning can automatically export to ONNX or TorchScript for those cases.
2020-10-08 11:27:13 +00:00
---
2020-06-18 21:55:35 +00:00
## Trending contributors
[![](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/0)](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/0)
[![](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/1)](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/1)
[![](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/2)](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/2)
[![](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/3)](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/3)
[![](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/4)](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/4)
[![](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/5)](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/5)
[![](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/6)](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/6)
[![](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/images/7)](https://sourcerer.io/fame/williamFalcon/pytorchlightning/pytorch-lightning/links/7)
2020-06-18 21:55:35 +00:00
---
## Continuous Integration
<center>
| System / PyTorch ver. | 1.3 (min. req.)* | 1.4 | 1.5 | 1.6 | 1.7 (latest) | 1.8 (nightly) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conda py3.7 [linux] | [![PyTorch & Conda](https://github.com/PyTorchLightning/pytorch-lightning/workflows/PyTorch%20&%20Conda/badge.svg)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22PyTorch+%26+Conda%22+branch%3Amaster) | [![PyTorch & Conda](https://github.com/PyTorchLightning/pytorch-lightning/workflows/PyTorch%20&%20Conda/badge.svg)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22PyTorch+%26+Conda%22+branch%3Amaster) | [![PyTorch & Conda](https://github.com/PyTorchLightning/pytorch-lightning/workflows/PyTorch%20&%20Conda/badge.svg)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22PyTorch+%26+Conda%22+branch%3Amaster) | [![PyTorch & Conda](https://github.com/PyTorchLightning/pytorch-lightning/workflows/PyTorch%20&%20Conda/badge.svg)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22PyTorch+%26+Conda%22+branch%3Amaster) | [![PyTorch & Conda](https://github.com/PyTorchLightning/pytorch-lightning/workflows/PyTorch%20&%20Conda/badge.svg)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22PyTorch+%26+Conda%22+branch%3Amaster) | [![PyTorch & Conda](https://github.com/PyTorchLightning/pytorch-lightning/workflows/PyTorch%20&%20Conda/badge.svg)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22PyTorch+%26+Conda%22+branch%3Amaster) |
| Linux py3.7 [GPUs**] | - | - | - | [![Build Status](http://104.154.220.231/api/badges/PyTorchLightning/pytorch-lightning/status.svg)](http://104.154.220.231/PyTorchLightning/pytorch-lightning) | - | - |
| Linux py3.7 [TPUs***] | - | - | - | [![TPU tests](https://github.com/PyTorchLightning/pytorch-lightning/workflows/TPU%20tests/badge.svg)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22TPU+tests%22+branch%3Amaster) | - | - |
| Linux py3.6 / py3.7 / py3.8 | [![CI complete testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg?event=push)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22) | - | - | - | [![CI complete testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg?event=push)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22) | - |
| OSX py3.6 / py3.7 | - | [![CI complete testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg?event=push)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22) | - | - | [![CI complete testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg?event=push)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22) | - |
| Windows py3.6 / py3.7 / py3.8 | [![CI complete testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg?event=push)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22) | - | - | - | [![CI complete testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20complete%20testing/badge.svg?event=push)](https://github.com/PyTorchLightning/pytorch-lightning/actions?query=workflow%3A%22CI+testing%22) | - |
- _\* `torch>=1.4` is the minimal pytorch version for Python 3.8_
- _\** tests run on two NVIDIA K80_
- _\*** tests run on Google GKE TPUv2/3_
- _TPU w/ py3.6/py3.7 means we support Colab and Kaggle env._
</center>
---
## How To Use
2020-09-21 21:06:40 +00:00
#### Step 0: Install
Simple installation from PyPI
```bash
pip install pytorch-lightning
```
From Conda
```bash
conda install pytorch-lightning -c conda-forge
```
2020-08-22 13:02:27 +00:00
Install bleeding-edge (no guarantees)
```bash
pip install git+https://github.com/PytorchLightning/pytorch-lightning.git@master --upgrade
```
2020-09-21 21:06:40 +00:00
#### Step 0: Add these imports
2020-05-12 12:46:22 +00:00
```python
import os
import torch
from torch import nn
import torch.nn.functional as F
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
import pytorch_lightning as pl
```
2020-05-12 12:46:22 +00:00
2020-09-23 11:39:46 +00:00
#### Step 1: Define a LightningModule (nn.Module subclass)
A LightningModule defines a full *system* (ie: a GAN, autoencoder, BERT or a simple Image Classifier).
```python
class LitAutoEncoder(pl.LightningModule):
2020-05-12 12:46:22 +00:00
def __init__(self):
2020-05-12 12:59:23 +00:00
super().__init__()
self.encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3))
self.decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28))
def forward(self, x):
# in lightning, forward defines the prediction/inference actions
embedding = self.encoder(x)
return embedding
2020-05-12 12:46:22 +00:00
def training_step(self, batch, batch_idx):
# training_step defined the train loop. It is independent of forward
x, y = batch
x = x.view(x.size(0), -1)
z = self.encoder(x)
x_hat = self.decoder(z)
loss = F.mse_loss(x_hat, x)
2020-10-09 23:11:54 +00:00
self.log('train_loss', loss)
return loss
2020-05-12 12:46:22 +00:00
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
return optimizer
```
2020-05-12 12:46:22 +00:00
###### Note: Training_step defines the training loop. Forward defines how the LightningModule behaves during inference/prediction.
#### Step 2: Train!
```python
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
train, val = random_split(dataset, [55000, 5000])
2020-05-12 12:46:22 +00:00
autoencoder = LitAutoEncoder()
trainer = pl.Trainer()
trainer.fit(autoencoder, DataLoader(train), DataLoader(val))
2020-05-12 12:46:22 +00:00
```
2020-11-02 07:30:58 +00:00
#### And without changing a single line of code, you could run on GPUs/TPUs
```python
# 8 GPUs
trainer = Trainer(max_epochs=1, gpus=8)
# 256 GPUs
trainer = Trainer(max_epochs=1, gpus=8, num_nodes=32)
2020-10-14 01:13:45 +00:00
# TPUs
trainer = Trainer(tpu_cores=8)
2020-10-14 01:13:45 +00:00
```
2020-10-14 01:13:45 +00:00
#### And even export for production via onnx or torchscript
```python
# torchscript
autoencoder = LitAutoEncoder()
torch.jit.save(autoencoder.to_torchscript(), "model.pt")
# onnx
with tempfile.NamedTemporaryFile(suffix='.onnx', delete=False) as tmpfile:
autoencoder = LitAutoEncoder()
input_sample = torch.randn((1, 64))
autoencoder.to_onnx(tmpfile.name, input_sample, export_params=True)
os.path.isfile(tmpfile.name)
```
2020-10-11 02:48:50 +00:00
#### For advanced users, you can still own complex training loops
```python
class LitAutoEncoder(pl.LightningModule):
def training_step(self, batch, batch_idx, opt_idx):
(opt_a, opt_b) = self.optimizers()
loss_a = ...
self.manual_backward(loss_a, opt_a)
opt_a.step()
opt_a.zero_grad()
loss_b = ...
self.manual_backward(loss_b, opt_b, retain_graph=True)
self.manual_backward(loss_b, opt_b)
opt_b.step()
opt_b.zero_grad()
```
2020-09-21 15:19:29 +00:00
---
## Key Features
* Scale your models to run on any hardware (CPU, GPUs, TPUs) without changing your model
* Making code more readable by decoupling the research code from the engineering
* Easier to reproduce
* Less error prone by automating most of the training loop and tricky engineering
* Keeps all the flexibility (LightningModules are still PyTorch modules), but removes a ton of boilerplate
* Lightning has out-of-the-box integration with the popular logging/visualizing frameworks ([Tensorboard](https://pytorch.org/docs/stable/tensorboard.html), [MLFlow](https://mlflow.org/), [Neptune.ai](https://neptune.ai/), [Comet.ml](https://www.comet.ml/site/), [Wandb](https://www.wandb.com/)).
* [Tested rigorously with every new PR](https://github.com/PyTorchLightning/pytorch-lightning/tree/master/tests). We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs.
* Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch).
### Lightning automates 40+ parts of DL/ML research
- GPU training
- Distributed GPU (cluster) training
- TPU training
- EarlyStopping
- Logging/Visualizing
- Checkpointing
- Experiment management
- [Full list here](https://pytorch-lightning.readthedocs.io/en/latest/#common-use-cases)
---
2020-09-21 20:34:55 +00:00
## Examples
###### Hello world
[MNIST hello world](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/01-mnist-hello-world.ipynb)
[MNIST on TPUs](https://colab.research.google.com/drive/1-_LKx4HwAxl5M6xPJmqAAu444LTDQoa3)
###### Contrastive Learning
[BYOL](https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_supervised_models.html#byol)
[CPC v2](https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_supervised_models.html#cpc-v2)
[Moco v2](https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_supervised_models.html#moco-v2)
[SIMCLR](https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_supervised_models.html#simclr)
###### NLP
[BERT](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/04-transformers-text-classification.ipynb)
[GPT-2](https://pytorch-lightning-bolts.readthedocs.io/en/latest/convolutional.html#gpt-2)
###### Reinforcement Learning
2020-07-28 15:43:47 +00:00
[DQN](https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=NWvMLBDySQI5)
[Dueling-DQN](https://pytorch-lightning-bolts.readthedocs.io/en/latest/reinforce_learn.html#dueling-dqn)
[Reinforce](https://pytorch-lightning-bolts.readthedocs.io/en/latest/reinforce_learn.html#reinforce)
###### Vision
[GAN](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/03-basic-gan.ipynb)
###### Classic ML
[Logistic Regression](https://pytorch-lightning-bolts.readthedocs.io/en/latest/classic_ml.html#logistic-regression)
[Linear Regression](https://pytorch-lightning-bolts.readthedocs.io/en/latest/classic_ml.html#linear-regression)
---
2019-12-12 19:06:20 +00:00
## Community
2020-04-03 14:04:54 +00:00
2020-09-21 20:37:26 +00:00
The lightning community is maintained by
2020-08-27 15:27:54 +00:00
- [16 core contributors](https://pytorch-lightning.readthedocs.io/en/latest/governance.html) who are all a mix of professional engineers, Research Scientists, Ph.D. students from top AI labs.
2020-09-21 20:37:26 +00:00
- 280+ community contributors.
Lightning is also part of the [PyTorch ecosystem](https://pytorch.org/ecosystem/) which requires projects to have solid testing, documentation and support.
### Asking for help
If you have any questions please:
2020-08-31 14:52:45 +00:00
1. [Read the docs](https://pytorch-lightning.rtfd.io/en/latest/).
2. [Look it up in our forum (or add a new question)](https://forums.pytorchlightning.ai/)
2. [Search through the issues](https://github.com/PytorchLightning/pytorch-lightning/issues?utf8=%E2%9C%93&q=my++question).
3. [Join our slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A).
4. [Ask on stackoverflow](https://stackoverflow.com/questions/ask?guided=false) with the tag pytorch-lightning.
### Funding
2020-10-11 02:55:16 +00:00
Building open-source software with only a few part-time people is hard!
[We're venture funded](https://techcrunch.com/2020/10/08/grid-ai-raises-18-6m-series-a-to-help-ai-researchers-and-engineers-bring-their-models-to-production/)
and backed by some of the top VC funds in the world, [Index Ventures](https://www.indexventures.com/companies/), [Bain Capital Ventures](https://www.baincapitalventures.com/portfolio/), [First Minute Capital](https://firstminute.capital/companies).
2020-10-11 02:55:16 +00:00
Their funding ensures we can continue to build awesome tooling like Grid, give you around the clock support,
hire a full-time staff, attend conferences, and move faster through implementing features you request.
2020-10-11 02:55:16 +00:00
To supercharge your research and production work, visit our [Grid.ai platform](https://www.grid.ai/)
2020-06-09 11:43:33 +00:00
---
2020-10-11 18:20:07 +00:00
## Grid AI
2020-10-11 18:14:30 +00:00
Grid AI is our native platform for training models at scale on the cloud!
**Sign up for [early access here](https://www.grid.ai/)**
To use grid, take your regular command:
```
python my_model.py --learning_rate 1e-6 --layers 2 --gpus 4
```
And change it to use the grid train command:
```
grid train --grid_gpus 4 my_model.py --learning_rate 'uniform(1e-6, 1e-1, 20)' --layers '[2, 4, 8, 16]'
```
The above command will launch (20 * 4) experiments each running on 4 GPUs (320 GPUs!) - by making ZERO changes to
your code.
---
2020-08-20 02:03:22 +00:00
## Licence
2020-08-20 02:03:22 +00:00
Please observe the Apache 2.0 license that is listed in this repository. In addition
the Lightning framework is Patent Pending.
## BibTeX
2019-11-05 16:52:50 +00:00
If you want to cite the framework feel free to use this (but only if you loved it 😊):
2020-04-28 03:54:20 +00:00
```bibtex
2020-04-28 03:54:20 +00:00
@article{falcon2019pytorch,
title={PyTorch Lightning},
author={Falcon, WA},
2020-09-14 04:19:09 +00:00
journal={GitHub. Note: https://github.com/PyTorchLightning/pytorch-lightning},
2020-04-28 03:54:20 +00:00
volume={3},
year={2019}
2019-11-05 16:53:12 +00:00
}
```