Update README.md
This commit is contained in:
parent
f770a91864
commit
bc9348f2c4
44
README.md
44
README.md
|
@ -68,6 +68,22 @@ conda install pytorch-lightning -c conda-forge
|
|||
- [0.8.1](https://pytorch-lightning.readthedocs.io/en/0.8.1/)
|
||||
- [0.7.6](https://pytorch-lightning.readthedocs.io/en/0.7.6/)
|
||||
|
||||
## PyTorch Lightning is just organized PyTorch
|
||||
![PT to PL](https://github.com/PyTorchLightning/pytorch-lightning/blob/master/docs/source/_images/general/fast_2.gif)
|
||||
|
||||
Lightning is a way to organize your PyTorch code to decouple the science code from the engineering.
|
||||
It's more of a PyTorch style-guide than a framework.
|
||||
|
||||
In Lightning, you organize your code into 3 distinct categories:
|
||||
|
||||
1. Research code (goes in the LightningModule).
|
||||
2. Engineering code (you delete, and is handled by the Trainer).
|
||||
3. Non-essential research code (logging, etc... this goes in Callbacks).
|
||||
|
||||
Once you do this, you can train on multiple-GPUs, TPUs, CPUs and even in 16-bit precision without changing your code!
|
||||
|
||||
Get started with our [QUICK START PAGE](https://pytorch-lightning.readthedocs.io/en/stable/new-project.html)
|
||||
|
||||
## Refactoring your PyTorch code + benefits + full walk-through
|
||||
[![Watch the video](docs/source/_images/general/tutorial_cover.jpg)](https://www.youtube.com/watch?v=QHww1JH7IDU)
|
||||
|
||||
|
@ -103,28 +119,12 @@ trainer = pl.Trainer(gpus=8, precision=16)
|
|||
trainer.fit(model, train_loader)
|
||||
```
|
||||
|
||||
Other examples:
|
||||
[MNIST hello world](https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=gEulmrbxwaYL)
|
||||
[GAN](https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=P0bSmCw57aV5)
|
||||
[BERT](https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=7uQVI-xv9Ddj)
|
||||
[DQN](https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=NWvMLBDySQI5)
|
||||
[MNIST on TPUs](https://colab.research.google.com/drive/1-_LKx4HwAxl5M6xPJmqAAu444LTDQoa3)
|
||||
|
||||
## What is it?
|
||||
[READ THIS QUICK START PAGE](https://pytorch-lightning.readthedocs.io/en/stable/new-project.html)
|
||||
|
||||
Lightning is a way to organize your PyTorch code to decouple the science code from the engineering.
|
||||
It's more of a PyTorch style-guide than a framework.
|
||||
|
||||
In Lightning, you organize your code into 3 distinct categories:
|
||||
|
||||
1. Research code (goes in the LightningModule).
|
||||
2. Engineering code (you delete, and is handled by the Trainer).
|
||||
3. Non-essential research code (logging, etc... this goes in Callbacks).
|
||||
|
||||
Here's an example of how to refactor your research code into a [LightningModule](https://pytorch-lightning.readthedocs.io/en/latest/lightning-module.html).
|
||||
|
||||
![PT to PL](https://github.com/PyTorchLightning/pytorch-lightning/blob/master/docs/source/_images/general/fast_2.gif)
|
||||
Other examples:
|
||||
[MNIST hello world](https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=gEulmrbxwaYL)
|
||||
[GAN](https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=P0bSmCw57aV5)
|
||||
[BERT](https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=7uQVI-xv9Ddj)
|
||||
[DQN](https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=NWvMLBDySQI5)
|
||||
[MNIST on TPUs](https://colab.research.google.com/drive/1-_LKx4HwAxl5M6xPJmqAAu444LTDQoa3)
|
||||
|
||||
## Testing Rigour
|
||||
All the automated code by the Trainer is [tested rigorously with every new PR](https://github.com/PyTorchLightning/pytorch-lightning/tree/master/tests).
|
||||
|
|
Loading…
Reference in New Issue