Update README.md

This commit is contained in:
William Falcon 2020-09-21 11:19:29 -04:00 committed by GitHub
parent 32303f1022
commit 2f301faf85
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 44 additions and 43 deletions

View File

@ -87,49 +87,6 @@ Get started with our [3 steps guide](https://pytorch-lightning.readthedocs.io/en
---
## [PyTorch Lightning Masterclass](https://www.youtube.com/watch?v=DbESHcCoWbM&list=PLaMu-SDt_RB5NUm67hU2pdE75j6KaIOv2)
### [New lessons weekly!](https://www.youtube.com/watch?v=DbESHcCoWbM&list=PLaMu-SDt_RB5NUm67hU2pdE75j6KaIOv2)
<div style="display: flex">
<div>
<p>From PyTorch to PyTorch Lightning</p>
<a href="https://www.youtube.com/watch?v=DbESHcCoWbM&list=PLaMu-SDt_RB5NUm67hU2pdE75j6KaIOv2">
<img alt="From PyTorch to PyTorch Lightning" src="https://github.com/PyTorchLightning/pytorch-lightning/blob/master/docs/source/_images/general/PTL101_youtube_thumbnail.jpg" width=250">
</a>
</div>
<div style="margin-top: 5px">
<p>Converting a VAE to PyTorch Lightning</p>
<a href="https://www.youtube.com/watch?v=QHww1JH7IDU">
<img alt="From PyTorch to PyTorch Lightning" src="https://github.com/PyTorchLightning/pytorch-lightning/blob/master/docs/source/_images/general/tutorial_cover.jpg" width=250">
</a>
</div>
</div>
---
## Key Features
* Scale your models to run on any hardware (CPU, GPUs, TPUs) without changing your model
* Making code more readable by decoupling the research code from the engineering
* Easier to reproduce
* Less error prone by automating most of the training loop and tricky engineering
* Keeps all the flexibility (LightningModules are still PyTorch modules), but removes a ton of boilerplate
* Lightning has out-of-the-box integration with the popular logging/visualizing frameworks ([Tensorboard](https://pytorch.org/docs/stable/tensorboard.html), [MLFlow](https://mlflow.org/), [Neptune.ai](https://neptune.ai/), [Comet.ml](https://www.comet.ml/site/), [Wandb](https://www.wandb.com/)).
* [Tested rigorously with every new PR](https://github.com/PyTorchLightning/pytorch-lightning/tree/master/tests). We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs.
* Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch).
### Lightning automates 40+ parts of DL/ML research
- GPU training
- Distributed GPU (cluster) training
- TPU training
- EarlyStopping
- Logging/Visualizing
- Checkpointing
- Experiment management
- [Full list here](https://pytorch-lightning.readthedocs.io/en/latest/#common-use-cases)
---
## How To Use
#### Setup step: Install
@ -214,6 +171,50 @@ trainer = Trainer(tpu_cores=8)
trainer = Trainer(tpu_cores=[1])
```
----
## [PyTorch Lightning Masterclass](https://www.youtube.com/watch?v=DbESHcCoWbM&list=PLaMu-SDt_RB5NUm67hU2pdE75j6KaIOv2)
### [New lessons weekly!](https://www.youtube.com/watch?v=DbESHcCoWbM&list=PLaMu-SDt_RB5NUm67hU2pdE75j6KaIOv2)
<div style="display: flex">
<div>
<p>From PyTorch to PyTorch Lightning</p>
<a href="https://www.youtube.com/watch?v=DbESHcCoWbM&list=PLaMu-SDt_RB5NUm67hU2pdE75j6KaIOv2">
<img alt="From PyTorch to PyTorch Lightning" src="https://github.com/PyTorchLightning/pytorch-lightning/blob/master/docs/source/_images/general/PTL101_youtube_thumbnail.jpg" width=250">
</a>
</div>
<div style="margin-top: 5px">
<p>Converting a VAE to PyTorch Lightning</p>
<a href="https://www.youtube.com/watch?v=QHww1JH7IDU">
<img alt="From PyTorch to PyTorch Lightning" src="https://github.com/PyTorchLightning/pytorch-lightning/blob/master/docs/source/_images/general/tutorial_cover.jpg" width=250">
</a>
</div>
</div>
---
## Key Features
* Scale your models to run on any hardware (CPU, GPUs, TPUs) without changing your model
* Making code more readable by decoupling the research code from the engineering
* Easier to reproduce
* Less error prone by automating most of the training loop and tricky engineering
* Keeps all the flexibility (LightningModules are still PyTorch modules), but removes a ton of boilerplate
* Lightning has out-of-the-box integration with the popular logging/visualizing frameworks ([Tensorboard](https://pytorch.org/docs/stable/tensorboard.html), [MLFlow](https://mlflow.org/), [Neptune.ai](https://neptune.ai/), [Comet.ml](https://www.comet.ml/site/), [Wandb](https://www.wandb.com/)).
* [Tested rigorously with every new PR](https://github.com/PyTorchLightning/pytorch-lightning/tree/master/tests). We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs.
* Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch).
### Lightning automates 40+ parts of DL/ML research
- GPU training
- Distributed GPU (cluster) training
- TPU training
- EarlyStopping
- Logging/Visualizing
- Checkpointing
- Experiment management
- [Full list here](https://pytorch-lightning.readthedocs.io/en/latest/#common-use-cases)
---
### Docs