lightning/tests/base/models.py

293 lines
9.1 KiB
Python
Raw Normal View History

from collections import OrderedDict
from typing import Dict
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
Add MNIST dataset & drop torchvision dep. from tests (#986) * added custom mnist without torchvision dep * move files so it does not conflict with mnist gitignore * mock torchvision for tests * fix line too long * fix line too long * fix "module level import not at top of file" warning * move mock imports to __init__.py * simplify MNIST a lot and download directly the .pt files * further simplify and clean up mnist * revert import overrides * make as before * drop PIL requirement * move mnist.py to datasets subfolder * use logging instead of print * choose same name as in torchvision * remove torchvision and pillow also from yml file * refactor if train Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * capitalized class attr * moved mnist to models * re-added datsets ignore * better name for file variable * Update mnist.py * move dataset classes to datasets.py * new line * update * update * fix automerge * move to base folder * adapt testingmnist to new mnist base class * remove temporal fix * fix datatype * remove old testingmnist * readable * fix import * fix whitespace * docstring Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/base/datasets.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * changelog * added types * Update CHANGELOG.md Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * exist->isfile Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * index -> idx * temporary fix for trains error * better changelog message Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-03-30 22:25:37 +00:00
from tests.base.datasets import TrialMNIST
try:
from test_tube import HyperOptArgumentParser
except ImportError:
# TODO: this should be discussed and moved out of this package
raise ImportError('Missing test-tube package.')
from pytorch_lightning.core.lightning import LightningModule
class DictHparamsModel(LightningModule):
def __init__(self, hparams: Dict):
super().__init__()
proper checkpoint implementation (#1043) * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * name formatting * version * testing * add test * fix test * Update model_checkpoint.py * doctests * pylint * tests * debug * debug * enabled early stopping/checkpooiunt even without val step * fix MNIST download (#1044) * fix MNIST download * simple * name formatting * version * testing * add test * fix test * doctests * tests * debug * debug * rebased 1041 * rebased 1041 * tests * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-03-05 04:02:19 +00:00
self.hparams = hparams
self.l1 = torch.nn.Linear(hparams.get('in_features'), hparams['out_features'])
def forward(self, x):
return torch.relu(self.l1(x.view(x.size(0), -1)))
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
return {'loss': F.cross_entropy(y_hat, y)}
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.02)
def train_dataloader(self):
return DataLoader(TrialMNIST(train=True, download=True), batch_size=16)
class TestModelBase(LightningModule):
"""Base LightningModule for testing. Implements only the required interface."""
def __init__(self, hparams, force_remove_distributed_sampler: bool = False):
"""Pass in parsed HyperOptArgumentParser to the model."""
# init superclass
super().__init__()
self.hparams = hparams
self.batch_size = hparams.batch_size
# if you specify an example input, the summary will show input/output for each layer
self.example_input_array = torch.rand(5, 28 * 28)
# remove to test warning for dist sampler
self.force_remove_distributed_sampler = force_remove_distributed_sampler
# build model
self.__build_model()
# ---------------------
# MODEL SETUP
# ---------------------
def __build_model(self):
"""Layout model."""
self.c_d1 = nn.Linear(in_features=self.hparams.in_features,
out_features=self.hparams.hidden_dim)
self.c_d1_bn = nn.BatchNorm1d(self.hparams.hidden_dim)
self.c_d1_drop = nn.Dropout(self.hparams.drop_prob)
self.c_d2 = nn.Linear(in_features=self.hparams.hidden_dim,
out_features=self.hparams.out_features)
# ---------------------
# TRAINING
# ---------------------
def forward(self, x):
"""No special modification required for lightning, define as you normally would."""
x = self.c_d1(x)
x = torch.tanh(x)
x = self.c_d1_bn(x)
x = self.c_d1_drop(x)
x = self.c_d2(x)
logits = F.log_softmax(x, dim=1)
return logits
def loss(self, labels, logits):
nll = F.nll_loss(logits, labels)
return nll
def training_step(self, batch, batch_idx, optimizer_idx=None):
"""Lightning calls this inside the training loop"""
# forward pass
x, y = batch
x = x.view(x.size(0), -1)
y_hat = self(x)
# calculate loss
loss_val = self.loss(y, y_hat)
# in DP mode (default) make sure if result is scalar, there's another dim in the beginning
if self.trainer.use_dp:
loss_val = loss_val.unsqueeze(0)
# alternate possible outputs to test
if self.trainer.batch_idx % 1 == 0:
output = OrderedDict({
'loss': loss_val,
'progress_bar': {'some_val': loss_val * loss_val},
'log': {'train_some_val': loss_val * loss_val},
})
return output
if self.trainer.batch_idx % 2 == 0:
return loss_val
# ---------------------
# TRAINING SETUP
# ---------------------
def configure_optimizers(self):
"""
return whatever optimizers we want here.
:return: list of optimizers
"""
# try no scheduler for this model (testing purposes)
if self.hparams.optimizer_name == 'lbfgs':
2019-10-05 14:47:18 +00:00
optimizer = optim.LBFGS(self.parameters(), lr=self.hparams.learning_rate)
else:
optimizer = optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10)
return [optimizer], [scheduler]
Clean up dataloader logic (#926) * added get dataloaders directly using a getter * deleted decorator * added prepare_data hook * refactored dataloader init * refactored dataloader init * added dataloader reset flag and main loop * added dataloader reset flag and main loop * added dataloader reset flag and main loop * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixes #909 * fixes #909 * bug fix * Fixes #902
2020-02-25 03:23:25 +00:00
def prepare_data(self):
_ = TrialMNIST(root=self.hparams.data_root, train=True, download=True)
Clean up dataloader logic (#926) * added get dataloaders directly using a getter * deleted decorator * added prepare_data hook * refactored dataloader init * refactored dataloader init * added dataloader reset flag and main loop * added dataloader reset flag and main loop * added dataloader reset flag and main loop * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixes #909 * fixes #909 * bug fix * Fixes #902
2020-02-25 03:23:25 +00:00
Refactor test modules (#180) * Expectopatronum implement #89 (#182) * rename validate -> evaluate; implement test logic; allow multiple test_loaders * add test_step and test_end to LightningModule * add in_test_mode to pretraining to implement case 2 (test pretrained model) * fix code style issues * LightningTestModel: add optional second test set, implement test_step and test_end * implemented test for multiple test_dataloaders; fixed typo * add two test cases for #89 * add documentation for test_step, test_end; fix computation of loss in validation_step example * Update trainer.py * Update trainer.py * Update trainer.py * Update trainer.py * Update trainer.py * Update trainer.py * Added proper dp ddp routing calls for test mode * Update trainer.py * Update test_models.py * Update trainer.py * Update trainer.py * Update override_data_parallel.py * Update test_models.py * Update test_models.py * Update trainer.py * Update trainer.py * Update trainer.py * Update test_models.py * Update test_models.py * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * Update trainer.py * Update override_data_parallel.py * Update debug.py * Update lm_test_module.py * Update test_models.py * release v0.4.8 * Update README.md * add training loop docs * testing loop docs * testing loop docs * Convert __dataloader to _dataloader This will let inherited classes use it * Factor common test model setup into base class * Specialized test modules inherit from LightningTestModelBase * Fix __is_overriden so that it works with more complicated inheritance * Use mixins to add functionality to test models * Fix test with no val_dataloader * Remove unused imports * Get rid of wild card import * Update trainer.py * Update lm_test_module.py
2019-09-02 19:46:16 +00:00
def _dataloader(self, train):
# init data generators
dataset = TrialMNIST(root=self.hparams.data_root, train=train, download=True)
# when using multi-node we need to add the datasampler
batch_size = self.hparams.batch_size
loader = DataLoader(
dataset=dataset,
batch_size=batch_size,
shuffle=True
)
return loader
class Generator(nn.Module):
def __init__(self, latent_dim, img_shape):
super().__init__()
self.img_shape = img_shape
def block(in_feat, out_feat, normalize=True):
layers = [nn.Linear(in_feat, out_feat)]
if normalize:
layers.append(nn.BatchNorm1d(out_feat, 0.8))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.model = nn.Sequential(
*block(latent_dim, 128, normalize=False),
*block(128, 256),
*block(256, 512),
*block(512, 1024),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh()
)
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), *self.img_shape)
return img
class Discriminator(nn.Module):
def __init__(self, img_shape):
super().__init__()
self.model = nn.Sequential(
nn.Linear(int(np.prod(img_shape)), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
nn.Sigmoid(),
)
def forward(self, img):
img_flat = img.view(img.size(0), -1)
validity = self.model(img_flat)
return validity
class TestGAN(LightningModule):
"""Implements a basic GAN for the purpose of illustrating multiple optimizers."""
def __init__(self, hparams):
super().__init__()
self.hparams = hparams
# networks
mnist_shape = (1, 28, 28)
self.generator = Generator(latent_dim=hparams.hidden_dim, img_shape=mnist_shape)
self.discriminator = Discriminator(img_shape=mnist_shape)
# cache for generated images
self.generated_imgs = None
self.last_imgs = None
def forward(self, z):
return self.generator(z)
def adversarial_loss(self, y_hat, y):
return F.binary_cross_entropy(y_hat, y)
def training_step(self, batch, batch_idx, optimizer_idx=None):
imgs, _ = batch
self.last_imgs = imgs
# train generator
if optimizer_idx == 0:
# sample noise
z = torch.randn(imgs.shape[0], self.hparams.hidden_dim)
z = z.type_as(imgs)
# generate images
self.generated_imgs = self(z)
# ground truth result (ie: all fake)
# put on GPU because we created this tensor inside training_loop
valid = torch.ones(imgs.size(0), 1)
valid = valid.type_as(imgs)
# adversarial loss is binary cross-entropy
g_loss = self.adversarial_loss(self.discriminator(self.generated_imgs), valid)
tqdm_dict = {'g_loss': g_loss}
output = OrderedDict({
'loss': g_loss,
'progress_bar': tqdm_dict,
'log': tqdm_dict
})
return output
# train discriminator
if optimizer_idx == 1:
# Measure discriminator's ability to classify real from generated samples
# how well can it label as real?
valid = torch.ones(imgs.size(0), 1)
valid = valid.type_as(imgs)
real_loss = self.adversarial_loss(self.discriminator(imgs), valid)
# how well can it label as fake?
fake = torch.zeros(imgs.size(0), 1)
fake = fake.type_as(fake)
fake_loss = self.adversarial_loss(
self.discriminator(self.generated_imgs.detach()), fake)
# discriminator loss is the average of these
d_loss = (real_loss + fake_loss) / 2
tqdm_dict = {'d_loss': d_loss}
output = OrderedDict({
'loss': d_loss,
'progress_bar': tqdm_dict,
'log': tqdm_dict
})
return output
def configure_optimizers(self):
lr = self.hparams.learning_rate
b1 = self.hparams.b1
b2 = self.hparams.b2
opt_g = torch.optim.Adam(self.generator.parameters(), lr=lr, betas=(b1, b2))
opt_d = torch.optim.Adam(self.discriminator.parameters(), lr=lr, betas=(b1, b2))
return [opt_g, opt_d], []
def train_dataloader(self):
return DataLoader(TrialMNIST(train=True, download=True), batch_size=16)