2019-08-11 14:01:57 +00:00
|
|
|
import os
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from torch import optim
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
|
|
from torchvision import transforms
|
2019-10-22 08:32:40 +00:00
|
|
|
from torchvision.datasets import MNIST
|
2020-01-20 19:50:31 +00:00
|
|
|
|
2019-10-28 22:41:13 +00:00
|
|
|
try:
|
|
|
|
from test_tube import HyperOptArgumentParser
|
|
|
|
except ImportError:
|
|
|
|
# TODO: this should be discussed and moved out of this package
|
|
|
|
raise ImportError('Missing test-tube package.')
|
2019-08-11 14:01:57 +00:00
|
|
|
|
2020-02-09 22:39:10 +00:00
|
|
|
from pytorch_lightning.core.decorators import data_loader
|
2019-11-27 03:39:18 +00:00
|
|
|
from pytorch_lightning.core.lightning import LightningModule
|
2019-08-11 14:01:57 +00:00
|
|
|
|
|
|
|
|
2019-11-28 17:06:05 +00:00
|
|
|
class TestingMNIST(MNIST):
|
|
|
|
|
|
|
|
def __init__(self, root, train=True, transform=None, target_transform=None,
|
|
|
|
download=False, num_samples=8000):
|
2020-02-25 18:06:24 +00:00
|
|
|
super().__init__(
|
2019-11-28 17:06:05 +00:00
|
|
|
root,
|
|
|
|
train=train,
|
|
|
|
transform=transform,
|
|
|
|
target_transform=target_transform,
|
|
|
|
download=download
|
|
|
|
)
|
|
|
|
# take just a subset of MNIST dataset
|
|
|
|
self.data = self.data[:num_samples]
|
|
|
|
self.targets = self.targets[:num_samples]
|
|
|
|
|
|
|
|
|
2020-02-19 11:00:08 +00:00
|
|
|
class TestModelBase(LightningModule):
|
2019-08-11 14:01:57 +00:00
|
|
|
"""
|
2019-09-02 19:46:16 +00:00
|
|
|
Base LightningModule for testing. Implements only the required
|
|
|
|
interface
|
2019-08-11 14:01:57 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, hparams, force_remove_distributed_sampler=False):
|
|
|
|
"""
|
|
|
|
Pass in parsed HyperOptArgumentParser to the model
|
|
|
|
:param hparams:
|
|
|
|
"""
|
|
|
|
# init superclass
|
2020-02-25 18:06:24 +00:00
|
|
|
super().__init__()
|
2019-08-11 14:01:57 +00:00
|
|
|
self.hparams = hparams
|
|
|
|
|
|
|
|
self.batch_size = hparams.batch_size
|
|
|
|
|
|
|
|
# if you specify an example input, the summary will show input/output for each layer
|
|
|
|
self.example_input_array = torch.rand(5, 28 * 28)
|
|
|
|
|
|
|
|
# remove to test warning for dist sampler
|
|
|
|
self.force_remove_distributed_sampler = force_remove_distributed_sampler
|
|
|
|
|
|
|
|
# build model
|
|
|
|
self.__build_model()
|
|
|
|
|
|
|
|
# ---------------------
|
|
|
|
# MODEL SETUP
|
|
|
|
# ---------------------
|
|
|
|
def __build_model(self):
|
|
|
|
"""
|
|
|
|
Layout model
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
self.c_d1 = nn.Linear(in_features=self.hparams.in_features,
|
|
|
|
out_features=self.hparams.hidden_dim)
|
|
|
|
self.c_d1_bn = nn.BatchNorm1d(self.hparams.hidden_dim)
|
|
|
|
self.c_d1_drop = nn.Dropout(self.hparams.drop_prob)
|
|
|
|
|
|
|
|
self.c_d2 = nn.Linear(in_features=self.hparams.hidden_dim,
|
|
|
|
out_features=self.hparams.out_features)
|
|
|
|
|
|
|
|
# ---------------------
|
|
|
|
# TRAINING
|
|
|
|
# ---------------------
|
|
|
|
def forward(self, x):
|
|
|
|
"""
|
|
|
|
No special modification required for lightning, define as you normally would
|
|
|
|
:param x:
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
x = self.c_d1(x)
|
|
|
|
x = torch.tanh(x)
|
|
|
|
x = self.c_d1_bn(x)
|
|
|
|
x = self.c_d1_drop(x)
|
|
|
|
|
|
|
|
x = self.c_d2(x)
|
|
|
|
logits = F.log_softmax(x, dim=1)
|
|
|
|
|
|
|
|
return logits
|
|
|
|
|
|
|
|
def loss(self, labels, logits):
|
|
|
|
nll = F.nll_loss(logits, labels)
|
|
|
|
return nll
|
|
|
|
|
2019-09-25 23:05:06 +00:00
|
|
|
def training_step(self, batch, batch_idx):
|
2019-08-11 14:01:57 +00:00
|
|
|
"""
|
|
|
|
Lightning calls this inside the training loop
|
2019-09-25 23:05:06 +00:00
|
|
|
:param batch:
|
2019-08-11 14:01:57 +00:00
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
# forward pass
|
2019-09-25 23:05:06 +00:00
|
|
|
x, y = batch
|
2019-08-11 14:01:57 +00:00
|
|
|
x = x.view(x.size(0), -1)
|
|
|
|
|
|
|
|
y_hat = self.forward(x)
|
|
|
|
|
|
|
|
# calculate loss
|
|
|
|
loss_val = self.loss(y, y_hat)
|
|
|
|
|
|
|
|
# in DP mode (default) make sure if result is scalar, there's another dim in the beginning
|
|
|
|
if self.trainer.use_dp:
|
|
|
|
loss_val = loss_val.unsqueeze(0)
|
|
|
|
|
|
|
|
# alternate possible outputs to test
|
2019-12-04 11:57:10 +00:00
|
|
|
if self.trainer.batch_idx % 1 == 0:
|
2019-08-11 14:01:57 +00:00
|
|
|
output = OrderedDict({
|
|
|
|
'loss': loss_val,
|
2019-10-06 21:57:23 +00:00
|
|
|
'progress_bar': {'some_val': loss_val * loss_val},
|
|
|
|
'log': {'train_some_val': loss_val * loss_val},
|
2019-08-11 14:01:57 +00:00
|
|
|
})
|
2019-10-05 17:35:20 +00:00
|
|
|
|
2019-08-11 14:01:57 +00:00
|
|
|
return output
|
2019-12-04 11:57:10 +00:00
|
|
|
if self.trainer.batch_idx % 2 == 0:
|
2019-08-11 14:01:57 +00:00
|
|
|
return loss_val
|
|
|
|
|
|
|
|
# ---------------------
|
|
|
|
# TRAINING SETUP
|
|
|
|
# ---------------------
|
|
|
|
def configure_optimizers(self):
|
|
|
|
"""
|
2019-10-05 15:10:21 +00:00
|
|
|
return whatever optimizers we want here.
|
2019-08-11 14:01:57 +00:00
|
|
|
:return: list of optimizers
|
|
|
|
"""
|
|
|
|
# try no scheduler for this model (testing purposes)
|
2019-10-05 15:10:21 +00:00
|
|
|
if self.hparams.optimizer_name == 'lbfgs':
|
2019-10-05 14:47:18 +00:00
|
|
|
optimizer = optim.LBFGS(self.parameters(), lr=self.hparams.learning_rate)
|
|
|
|
else:
|
|
|
|
optimizer = optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
|
2019-08-11 14:01:57 +00:00
|
|
|
|
|
|
|
# test returning only 1 list instead of 2
|
2019-09-02 19:46:16 +00:00
|
|
|
return optimizer
|
2019-08-11 14:01:57 +00:00
|
|
|
|
2020-02-25 03:23:25 +00:00
|
|
|
def prepare_data(self):
|
|
|
|
transform = transforms.Compose([transforms.ToTensor(),
|
|
|
|
transforms.Normalize((0.5,), (1.0,))])
|
2020-02-25 18:06:24 +00:00
|
|
|
_ = TestingMNIST(root=self.hparams.data_root, train=True,
|
|
|
|
transform=transform, download=True, num_samples=2000)
|
2020-02-25 03:23:25 +00:00
|
|
|
|
2019-09-02 19:46:16 +00:00
|
|
|
def _dataloader(self, train):
|
2019-08-11 14:01:57 +00:00
|
|
|
# init data generators
|
|
|
|
transform = transforms.Compose([transforms.ToTensor(),
|
|
|
|
transforms.Normalize((0.5,), (1.0,))])
|
2019-11-28 17:06:05 +00:00
|
|
|
dataset = TestingMNIST(root=self.hparams.data_root, train=train,
|
2020-02-25 03:23:25 +00:00
|
|
|
transform=transform, download=False, num_samples=2000)
|
2019-08-11 14:01:57 +00:00
|
|
|
|
|
|
|
# when using multi-node we need to add the datasampler
|
|
|
|
batch_size = self.hparams.batch_size
|
|
|
|
|
|
|
|
loader = DataLoader(
|
|
|
|
dataset=dataset,
|
|
|
|
batch_size=batch_size,
|
|
|
|
)
|
|
|
|
|
|
|
|
return loader
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def add_model_specific_args(parent_parser, root_dir): # pragma: no cover
|
|
|
|
"""
|
|
|
|
Parameters you define here will be available to your model through self.hparams
|
|
|
|
:param parent_parser:
|
|
|
|
:param root_dir:
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
parser = HyperOptArgumentParser(strategy=parent_parser.strategy, parents=[parent_parser])
|
|
|
|
|
|
|
|
# param overwrites
|
2019-09-25 23:05:06 +00:00
|
|
|
# parser.set_defaults(gradient_clip_val=5.0)
|
2019-08-11 14:01:57 +00:00
|
|
|
|
|
|
|
# network params
|
|
|
|
parser.opt_list('--drop_prob', default=0.2, options=[0.2, 0.5], type=float, tunable=False)
|
|
|
|
parser.add_argument('--in_features', default=28 * 28, type=int)
|
|
|
|
parser.add_argument('--out_features', default=10, type=int)
|
|
|
|
# use 500 for CPU, 50000 for GPU to see speed difference
|
|
|
|
parser.add_argument('--hidden_dim', default=50000, type=int)
|
|
|
|
# data
|
|
|
|
parser.add_argument('--data_root', default=os.path.join(root_dir, 'mnist'), type=str)
|
|
|
|
# training params (opt)
|
|
|
|
parser.opt_list('--learning_rate', default=0.001 * 8, type=float,
|
|
|
|
options=[0.0001, 0.0005, 0.001, 0.005],
|
|
|
|
tunable=False)
|
|
|
|
parser.opt_list('--optimizer_name', default='adam', type=str,
|
|
|
|
options=['adam'], tunable=False)
|
|
|
|
# if using 2 nodes with 4 gpus each the batch size here
|
|
|
|
# (256) will be 256 / (2*8) = 16 per gpu
|
|
|
|
parser.opt_list('--batch_size', default=256 * 8, type=int,
|
|
|
|
options=[32, 64, 128, 256], tunable=False,
|
2020-02-25 18:06:24 +00:00
|
|
|
help='batch size will be divided over all GPUs being used across all nodes')
|
2019-08-11 14:01:57 +00:00
|
|
|
return parser
|