speed-up testing (#504)

* extend CI timeout

* add short MNIST

* lower dataset and stop thr

* refactor imports

* formatting

* early stop

* play params

* play params

* minor refactoring

# Conflicts:
#	pytorch_lightning/testing/__init__.py
#	pytorch_lightning/testing/lm_test_module.py
#	pytorch_lightning/testing/lm_test_module_base.py
#	pytorch_lightning/testing/lm_test_module_mixins.py
#	pytorch_lightning/testing/model.py
#	pytorch_lightning/testing/model_base.py
#	pytorch_lightning/testing/model_mixins.py
#	pytorch_lightning/testing/test_module.py
#	pytorch_lightning/testing/test_module_base.py
#	pytorch_lightning/testing/test_module_mixins.py

* typo

Co-Authored-By: Ir1dXD <sirius.caffrey@gmail.com>

* Revert "refactor imports"

This reverts commit b86aee92

* update imports
This commit is contained in:
Jirka Borovec 2019-11-28 18:06:05 +01:00 committed by William Falcon
parent 9785a3e78e
commit 47659daa5f
12 changed files with 257 additions and 253 deletions

View File

@ -22,6 +22,7 @@ references:
command: |
python --version ; pip --version ; pip list
py.test pytorch_lightning tests pl_examples -v --doctest-modules --junitxml=test-reports/pytest_junit.xml --flake8
no_output_timeout: 15m
jobs:

View File

@ -1,6 +1,6 @@
from .test_module import LightningTestModel
from .test_module_base import LightningTestModelBase
from .test_module_mixins import (
from .model import LightningTestModel
from .model_base import LightningTestModelBase
from .model_mixins import (
LightningValidationStepMixin,
LightningValidationMixin,
LightningValidationStepMultipleDataloadersMixin,

View File

@ -1,7 +1,7 @@
import torch
from .test_module_base import LightningTestModelBase
from .test_module_mixins import LightningValidationMixin, LightningTestMixin
from .model_base import LightningTestModelBase
from .model_mixins import LightningValidationMixin, LightningTestMixin
class LightningTestModel(LightningValidationMixin, LightningTestMixin, LightningTestModelBase):

View File

@ -19,6 +19,22 @@ from pytorch_lightning import data_loader
from pytorch_lightning.core.lightning import LightningModule
class TestingMNIST(MNIST):
def __init__(self, root, train=True, transform=None, target_transform=None,
download=False, num_samples=8000):
super(TestingMNIST, self).__init__(
root,
train=train,
transform=transform,
target_transform=target_transform,
download=download
)
# take just a subset of MNIST dataset
self.data = self.data[:num_samples]
self.targets = self.targets[:num_samples]
class LightningTestModelBase(LightningModule):
"""
Base LightningModule for testing. Implements only the required
@ -137,8 +153,8 @@ class LightningTestModelBase(LightningModule):
# init data generators
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (1.0,))])
dataset = MNIST(root=self.hparams.data_root, train=train,
transform=transform, download=True)
dataset = TestingMNIST(root=self.hparams.data_root, train=train,
transform=transform, download=True, num_samples=2000)
# when using multi-node we need to add the datasampler
train_sampler = None

View File

@ -9,7 +9,7 @@ from pytorch_lightning.testing import (
LightningTestModel,
)
from pytorch_lightning.utilities.debugging import MisconfigurationException
from . import testing_utils
import tests.utils as tutils
def test_amp_single_gpu():
@ -17,12 +17,12 @@ def test_amp_single_gpu():
Make sure DDP + AMP work
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
if not testing_utils.can_run_gpu_test():
if not tutils.can_run_gpu_test():
return
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
trainer_options = dict(
@ -33,7 +33,7 @@ def test_amp_single_gpu():
use_amp=True
)
testing_utils.run_gpu_model_test(trainer_options, model, hparams)
tutils.run_model_test(trainer_options, model, hparams)
def test_no_amp_single_gpu():
@ -41,12 +41,12 @@ def test_no_amp_single_gpu():
Make sure DDP + AMP work
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
if not testing_utils.can_run_gpu_test():
if not tutils.can_run_gpu_test():
return
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
trainer_options = dict(
@ -58,7 +58,7 @@ def test_no_amp_single_gpu():
)
with pytest.raises((MisconfigurationException, ModuleNotFoundError)):
testing_utils.run_gpu_model_test(trainer_options, model, hparams)
tutils.run_model_test(trainer_options, model, hparams)
def test_amp_gpu_ddp():
@ -66,13 +66,13 @@ def test_amp_gpu_ddp():
Make sure DDP + AMP work
:return:
"""
if not testing_utils.can_run_gpu_test():
if not tutils.can_run_gpu_test():
return
testing_utils.reset_seed()
testing_utils.set_random_master_port()
tutils.reset_seed()
tutils.set_random_master_port()
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
trainer_options = dict(
@ -83,7 +83,7 @@ def test_amp_gpu_ddp():
use_amp=True
)
testing_utils.run_gpu_model_test(trainer_options, model, hparams)
tutils.run_model_test(trainer_options, model, hparams)
def test_amp_gpu_ddp_slurm_managed():
@ -91,16 +91,16 @@ def test_amp_gpu_ddp_slurm_managed():
Make sure DDP + AMP work
:return:
"""
if not testing_utils.can_run_gpu_test():
if not tutils.can_run_gpu_test():
return
testing_utils.reset_seed()
tutils.reset_seed()
# simulate setting slurm flags
testing_utils.set_random_master_port()
tutils.set_random_master_port()
os.environ['SLURM_LOCALID'] = str(0)
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
trainer_options = dict(
@ -111,13 +111,13 @@ def test_amp_gpu_ddp_slurm_managed():
use_amp=True
)
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
# exp file to get meta
logger = testing_utils.get_test_tube_logger(False)
logger = tutils.get_test_tube_logger(False)
# exp file to get weights
checkpoint = testing_utils.init_checkpoint_callback(logger)
checkpoint = tutils.init_checkpoint_callback(logger)
# add these to the trainer options
trainer_options['checkpoint_callback'] = checkpoint
@ -138,12 +138,11 @@ def test_amp_gpu_ddp_slurm_managed():
assert trainer.resolve_root_node_address('abc[23-24, 45-40, 40]') == 'abc23'
# test model loading with a map_location
pretrained_model = testing_utils.load_model(logger.experiment,
trainer.checkpoint_callback.filepath)
pretrained_model = tutils.load_model(logger.experiment, trainer.checkpoint_callback.filepath)
# test model preds
for dataloader in trainer.get_test_dataloaders():
testing_utils.run_prediction(dataloader, pretrained_model)
tutils.run_prediction(dataloader, pretrained_model)
if trainer.use_ddp:
# on hpc this would work fine... but need to hack it for the purpose of the test
@ -158,7 +157,7 @@ def test_amp_gpu_ddp_slurm_managed():
model.freeze()
model.unfreeze()
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_cpu_model_with_amp():
@ -166,21 +165,21 @@ def test_cpu_model_with_amp():
Make sure model trains on CPU
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
trainer_options = dict(
show_progress_bar=False,
logger=testing_utils.get_test_tube_logger(),
logger=tutils.get_test_tube_logger(),
max_nb_epochs=1,
train_percent_check=0.4,
val_percent_check=0.4,
use_amp=True
)
model, hparams = testing_utils.get_model()
model, hparams = tutils.get_model()
with pytest.raises((MisconfigurationException, ModuleNotFoundError)):
testing_utils.run_gpu_model_test(trainer_options, model, hparams, on_gpu=False)
tutils.run_model_test(trainer_options, model, hparams, on_gpu=False)
def test_amp_gpu_dp():
@ -188,12 +187,12 @@ def test_amp_gpu_dp():
Make sure DP + AMP work
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
if not testing_utils.can_run_gpu_test():
if not tutils.can_run_gpu_test():
return
model, hparams = testing_utils.get_model()
model, hparams = tutils.get_model()
trainer_options = dict(
max_nb_epochs=1,
gpus='0, 1', # test init with gpu string
@ -201,7 +200,7 @@ def test_amp_gpu_dp():
use_amp=True
)
with pytest.raises(MisconfigurationException):
testing_utils.run_gpu_model_test(trainer_options, model, hparams)
tutils.run_model_test(trainer_options, model, hparams)
if __name__ == '__main__':

View File

@ -12,7 +12,7 @@ from pytorch_lightning.testing import (
LightningTestModelBase,
LightningTestMixin,
)
from . import testing_utils
import tests.utils as tutils
def test_early_stopping_cpu_model():
@ -20,9 +20,9 @@ def test_early_stopping_cpu_model():
Test each of the trainer options
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
stopping = EarlyStopping(monitor='val_loss')
stopping = EarlyStopping(monitor='val_loss', min_delta=0.1)
trainer_options = dict(
early_stop_callback=stopping,
gradient_clip_val=1.0,
@ -30,13 +30,13 @@ def test_early_stopping_cpu_model():
track_grad_norm=2,
print_nan_grads=True,
show_progress_bar=True,
logger=testing_utils.get_test_tube_logger(),
logger=tutils.get_test_tube_logger(),
train_percent_check=0.1,
val_percent_check=0.1
)
model, hparams = testing_utils.get_model()
testing_utils.run_gpu_model_test(trainer_options, model, hparams, on_gpu=False)
model, hparams = tutils.get_model()
tutils.run_model_test(trainer_options, model, hparams, on_gpu=False)
# test freeze on cpu
model.freeze()
@ -48,7 +48,7 @@ def test_lbfgs_cpu_model():
Test each of the trainer options
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
trainer_options = dict(
max_nb_epochs=1,
@ -59,11 +59,11 @@ def test_lbfgs_cpu_model():
val_percent_check=0.2
)
model, hparams = testing_utils.get_model(use_test_model=True, lbfgs=True)
testing_utils.run_model_test_no_loggers(trainer_options,
model, hparams, on_gpu=False, min_acc=0.30)
model, hparams = tutils.get_model(use_test_model=True, lbfgs=True)
tutils.run_model_test_no_loggers(trainer_options, model, hparams,
on_gpu=False, min_acc=0.30)
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_default_logger_callbacks_cpu_model():
@ -71,7 +71,7 @@ def test_default_logger_callbacks_cpu_model():
Test each of the trainer options
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
trainer_options = dict(
max_nb_epochs=1,
@ -83,30 +83,30 @@ def test_default_logger_callbacks_cpu_model():
val_percent_check=0.01
)
model, hparams = testing_utils.get_model()
testing_utils.run_model_test_no_loggers(trainer_options, model, hparams, on_gpu=False)
model, hparams = tutils.get_model()
tutils.run_model_test_no_loggers(trainer_options, model, hparams, on_gpu=False)
# test freeze on cpu
model.freeze()
model.unfreeze()
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_running_test_after_fitting():
"""Verify test() on fitted model"""
testing_utils.reset_seed()
tutils.reset_seed()
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
# logger file to get meta
logger = testing_utils.get_test_tube_logger(False)
logger = tutils.get_test_tube_logger(False)
# logger file to get weights
checkpoint = testing_utils.init_checkpoint_callback(logger)
checkpoint = tutils.init_checkpoint_callback(logger)
trainer_options = dict(
show_progress_bar=False,
@ -127,29 +127,29 @@ def test_running_test_after_fitting():
trainer.test()
# test we have good test accuracy
testing_utils.assert_ok_test_acc(trainer)
tutils.assert_ok_test_acc(trainer)
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_running_test_without_val():
testing_utils.reset_seed()
tutils.reset_seed()
"""Verify test() works on a model with no val_loader"""
class CurrentTestModel(LightningTestMixin, LightningTestModelBase):
pass
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = CurrentTestModel(hparams)
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
# logger file to get meta
logger = testing_utils.get_test_tube_logger(False)
logger = tutils.get_test_tube_logger(False)
# logger file to get weights
checkpoint = testing_utils.init_checkpoint_callback(logger)
checkpoint = tutils.init_checkpoint_callback(logger)
trainer_options = dict(
show_progress_bar=False,
@ -170,15 +170,15 @@ def test_running_test_without_val():
trainer.test()
# test we have good test accuracy
testing_utils.assert_ok_test_acc(trainer)
tutils.assert_ok_test_acc(trainer)
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_single_gpu_batch_parse():
testing_utils.reset_seed()
tutils.reset_seed()
if not testing_utils.can_run_gpu_test():
if not tutils.can_run_gpu_test():
return
trainer = Trainer()
@ -224,12 +224,12 @@ def test_simple_cpu():
Verify continue training session on CPU
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
# logger file to get meta
trainer_options = dict(
@ -245,7 +245,7 @@ def test_simple_cpu():
# traning complete
assert result == 1, 'amp + ddp model failed to complete'
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_cpu_model():
@ -253,19 +253,19 @@ def test_cpu_model():
Make sure model trains on CPU
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
trainer_options = dict(
show_progress_bar=False,
logger=testing_utils.get_test_tube_logger(),
logger=tutils.get_test_tube_logger(),
max_nb_epochs=1,
train_percent_check=0.4,
val_percent_check=0.4
)
model, hparams = testing_utils.get_model()
model, hparams = tutils.get_model()
testing_utils.run_gpu_model_test(trainer_options, model, hparams, on_gpu=False)
tutils.run_model_test(trainer_options, model, hparams, on_gpu=False)
def test_all_features_cpu_model():
@ -273,7 +273,7 @@ def test_all_features_cpu_model():
Test each of the trainer options
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
trainer_options = dict(
gradient_clip_val=1.0,
@ -281,15 +281,15 @@ def test_all_features_cpu_model():
track_grad_norm=2,
print_nan_grads=True,
show_progress_bar=False,
logger=testing_utils.get_test_tube_logger(),
logger=tutils.get_test_tube_logger(),
accumulate_grad_batches=2,
max_nb_epochs=1,
train_percent_check=0.4,
val_percent_check=0.4
)
model, hparams = testing_utils.get_model()
testing_utils.run_gpu_model_test(trainer_options, model, hparams, on_gpu=False)
model, hparams = tutils.get_model()
tutils.run_model_test(trainer_options, model, hparams, on_gpu=False)
def test_tbptt_cpu_model():
@ -297,9 +297,9 @@ def test_tbptt_cpu_model():
Test truncated back propagation through time works.
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
truncated_bptt_steps = 2
sequence_size = 30
@ -354,7 +354,7 @@ def test_tbptt_cpu_model():
weights_summary=None,
)
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
hparams.batch_size = batch_size
hparams.in_features = truncated_bptt_steps
hparams.hidden_dim = truncated_bptt_steps
@ -368,7 +368,7 @@ def test_tbptt_cpu_model():
assert result == 1, 'training failed to complete'
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_single_gpu_model():
@ -376,13 +376,13 @@ def test_single_gpu_model():
Make sure single GPU works (DP mode)
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
if not torch.cuda.is_available():
warnings.warn('test_single_gpu_model cannot run.'
' Rerun on a GPU node to run this test')
return
model, hparams = testing_utils.get_model()
model, hparams = tutils.get_model()
trainer_options = dict(
show_progress_bar=False,
@ -392,7 +392,7 @@ def test_single_gpu_model():
gpus=1
)
testing_utils.run_gpu_model_test(trainer_options, model, hparams)
tutils.run_model_test(trainer_options, model, hparams)
if __name__ == '__main__':

View File

@ -15,7 +15,7 @@ from pytorch_lightning.trainer.dp_mixin import (
determine_root_gpu_device,
)
from pytorch_lightning.utilities.debugging import MisconfigurationException
from . import testing_utils
import tests.utils as tutils
PRETEND_N_OF_GPUS = 16
@ -25,13 +25,13 @@ def test_multi_gpu_model_ddp2():
Make sure DDP2 works
:return:
"""
if not testing_utils.can_run_gpu_test():
if not tutils.can_run_gpu_test():
return
testing_utils.reset_seed()
testing_utils.set_random_master_port()
tutils.reset_seed()
tutils.set_random_master_port()
model, hparams = testing_utils.get_model()
model, hparams = tutils.get_model()
trainer_options = dict(
show_progress_bar=True,
max_nb_epochs=1,
@ -42,7 +42,7 @@ def test_multi_gpu_model_ddp2():
distributed_backend='ddp2'
)
testing_utils.run_gpu_model_test(trainer_options, model, hparams)
tutils.run_model_test(trainer_options, model, hparams)
def test_multi_gpu_model_ddp():
@ -50,13 +50,13 @@ def test_multi_gpu_model_ddp():
Make sure DDP works
:return:
"""
if not testing_utils.can_run_gpu_test():
if not tutils.can_run_gpu_test():
return
testing_utils.reset_seed()
testing_utils.set_random_master_port()
tutils.reset_seed()
tutils.set_random_master_port()
model, hparams = testing_utils.get_model()
model, hparams = tutils.get_model()
trainer_options = dict(
show_progress_bar=False,
max_nb_epochs=1,
@ -66,14 +66,14 @@ def test_multi_gpu_model_ddp():
distributed_backend='ddp'
)
testing_utils.run_gpu_model_test(trainer_options, model, hparams)
tutils.run_model_test(trainer_options, model, hparams)
def test_optimizer_return_options():
testing_utils.reset_seed()
tutils.reset_seed()
trainer = Trainer()
model, hparams = testing_utils.get_model()
model, hparams = tutils.get_model()
# single optimizer
opt_a = torch.optim.Adam(model.parameters(), lr=0.002)
@ -105,15 +105,15 @@ def test_cpu_slurm_save_load():
Verify model save/load/checkpoint on CPU
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
# logger file to get meta
logger = testing_utils.get_test_tube_logger(False)
logger = tutils.get_test_tube_logger(False)
version = logger.version
@ -149,7 +149,7 @@ def test_cpu_slurm_save_load():
assert os.path.exists(saved_filepath)
# new logger file to get meta
logger = testing_utils.get_test_tube_logger(False, version=version)
logger = tutils.get_test_tube_logger(False, version=version)
trainer_options = dict(
max_nb_epochs=1,
@ -174,7 +174,7 @@ def test_cpu_slurm_save_load():
# and our hook to predict using current model before any more weight updates
trainer.fit(model)
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_multi_gpu_none_backend():
@ -183,12 +183,12 @@ def test_multi_gpu_none_backend():
distributed_backend = None
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
if not testing_utils.can_run_gpu_test():
if not tutils.can_run_gpu_test():
return
model, hparams = testing_utils.get_model()
model, hparams = tutils.get_model()
trainer_options = dict(
show_progress_bar=False,
max_nb_epochs=1,
@ -198,7 +198,7 @@ def test_multi_gpu_none_backend():
)
with pytest.raises(MisconfigurationException):
testing_utils.run_gpu_model_test(trainer_options, model, hparams)
tutils.run_model_test(trainer_options, model, hparams)
def test_multi_gpu_model_dp():
@ -206,12 +206,12 @@ def test_multi_gpu_model_dp():
Make sure DP works
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
if not testing_utils.can_run_gpu_test():
if not tutils.can_run_gpu_test():
return
model, hparams = testing_utils.get_model()
model, hparams = tutils.get_model()
trainer_options = dict(
show_progress_bar=False,
distributed_backend='dp',
@ -221,7 +221,7 @@ def test_multi_gpu_model_dp():
gpus='-1'
)
testing_utils.run_gpu_model_test(trainer_options, model, hparams)
tutils.run_model_test(trainer_options, model, hparams)
# test memory helper functions
memory.get_memory_profile('min_max')
@ -232,16 +232,16 @@ def test_ddp_sampler_error():
Make sure DDP + AMP work
:return:
"""
if not testing_utils.can_run_gpu_test():
if not tutils.can_run_gpu_test():
return
testing_utils.reset_seed()
testing_utils.set_random_master_port()
tutils.reset_seed()
tutils.set_random_master_port()
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams, force_remove_distributed_sampler=True)
logger = testing_utils.get_test_tube_logger(True)
logger = tutils.get_test_tube_logger(True)
trainer = Trainer(
logger=logger,
@ -255,7 +255,7 @@ def test_ddp_sampler_error():
with pytest.warns(UserWarning):
trainer.get_dataloaders(model)
testing_utils.clear_save_dir()
tutils.clear_save_dir()
@pytest.fixture

View File

@ -7,26 +7,20 @@ import torch
from pytorch_lightning import Trainer
from pytorch_lightning.testing import LightningTestModel
from pytorch_lightning.logging import LightningLoggerBase, rank_zero_only
from . import testing_utils
RANDOM_FILE_PATHS = list(np.random.randint(12000, 19000, 1000))
ROOT_SEED = 1234
torch.manual_seed(ROOT_SEED)
np.random.seed(ROOT_SEED)
RANDOM_SEEDS = list(np.random.randint(0, 10000, 1000))
import tests.utils as tutils
def test_testtube_logger():
"""
verify that basic functionality of test tube logger works
"""
reset_seed()
hparams = testing_utils.get_hparams()
tutils.reset_seed()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
logger = testing_utils.get_test_tube_logger(False)
logger = tutils.get_test_tube_logger(False)
trainer_options = dict(
max_nb_epochs=1,
@ -39,21 +33,21 @@ def test_testtube_logger():
assert result == 1, "Training failed"
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_testtube_pickle():
"""
Verify that pickling a trainer containing a test tube logger works
"""
reset_seed()
tutils.reset_seed()
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
logger = testing_utils.get_test_tube_logger(False)
logger = tutils.get_test_tube_logger(False)
logger.log_hyperparams(hparams)
logger.save()
@ -68,21 +62,21 @@ def test_testtube_pickle():
trainer2 = pickle.loads(pkl_bytes)
trainer2.logger.log_metrics({"acc": 1.0})
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_mlflow_logger():
"""
verify that basic functionality of mlflow logger works
"""
reset_seed()
tutils.reset_seed()
try:
from pytorch_lightning.logging import MLFlowLogger
except ModuleNotFoundError:
return
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
root_dir = os.path.dirname(os.path.realpath(__file__))
@ -102,21 +96,21 @@ def test_mlflow_logger():
print('result finished')
assert result == 1, "Training failed"
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_mlflow_pickle():
"""
verify that pickling trainer with mlflow logger works
"""
reset_seed()
tutils.reset_seed()
try:
from pytorch_lightning.logging import MLFlowLogger
except ModuleNotFoundError:
return
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
root_dir = os.path.dirname(os.path.realpath(__file__))
@ -134,21 +128,21 @@ def test_mlflow_pickle():
trainer2 = pickle.loads(pkl_bytes)
trainer2.logger.log_metrics({"acc": 1.0})
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_comet_logger():
"""
verify that basic functionality of Comet.ml logger works
"""
reset_seed()
tutils.reset_seed()
try:
from pytorch_lightning.logging import CometLogger
except ModuleNotFoundError:
return
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
root_dir = os.path.dirname(os.path.realpath(__file__))
@ -173,21 +167,21 @@ def test_comet_logger():
print('result finished')
assert result == 1, "Training failed"
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_comet_pickle():
"""
verify that pickling trainer with comet logger works
"""
reset_seed()
tutils.reset_seed()
try:
from pytorch_lightning.logging import CometLogger
except ModuleNotFoundError:
return
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
root_dir = os.path.dirname(os.path.realpath(__file__))
@ -210,7 +204,7 @@ def test_comet_pickle():
trainer2 = pickle.loads(pkl_bytes)
trainer2.logger.log_metrics({"acc": 1.0})
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_custom_logger(tmpdir):
@ -241,7 +235,7 @@ def test_custom_logger(tmpdir):
def version(self):
return "1"
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
logger = CustomLogger()
@ -259,9 +253,3 @@ def test_custom_logger(tmpdir):
assert logger.hparams_logged == hparams
assert logger.metrics_logged != {}
assert logger.finalized_status == "success"
def reset_seed():
SEED = RANDOM_SEEDS.pop()
torch.manual_seed(SEED)
np.random.seed(SEED)

View File

@ -7,27 +7,27 @@ import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.testing import LightningTestModel
from . import testing_utils
import tests.utils as tutils
def test_running_test_pretrained_model_ddp():
"""Verify test() on pretrained model"""
if not testing_utils.can_run_gpu_test():
if not tutils.can_run_gpu_test():
return
testing_utils.reset_seed()
testing_utils.set_random_master_port()
tutils.reset_seed()
tutils.set_random_master_port()
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
# exp file to get meta
logger = testing_utils.get_test_tube_logger(False)
logger = tutils.get_test_tube_logger(False)
# exp file to get weights
checkpoint = testing_utils.init_checkpoint_callback(logger)
checkpoint = tutils.init_checkpoint_callback(logger)
trainer_options = dict(
show_progress_bar=False,
@ -49,38 +49,38 @@ def test_running_test_pretrained_model_ddp():
# correct result and ok accuracy
assert result == 1, 'training failed to complete'
pretrained_model = testing_utils.load_model(logger.experiment,
trainer.checkpoint_callback.filepath,
module_class=LightningTestModel)
pretrained_model = tutils.load_model(logger.experiment,
trainer.checkpoint_callback.filepath,
module_class=LightningTestModel)
# run test set
new_trainer = Trainer(**trainer_options)
new_trainer.test(pretrained_model)
for dataloader in model.test_dataloader():
testing_utils.run_prediction(dataloader, pretrained_model)
tutils.run_prediction(dataloader, pretrained_model)
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_running_test_pretrained_model():
testing_utils.reset_seed()
tutils.reset_seed()
"""Verify test() on pretrained model"""
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
# logger file to get meta
logger = testing_utils.get_test_tube_logger(False)
logger = tutils.get_test_tube_logger(False)
# logger file to get weights
checkpoint = testing_utils.init_checkpoint_callback(logger)
checkpoint = tutils.init_checkpoint_callback(logger)
trainer_options = dict(
show_progress_bar=False,
max_nb_epochs=1,
max_nb_epochs=4,
train_percent_check=0.4,
val_percent_check=0.2,
checkpoint_callback=checkpoint,
@ -93,7 +93,7 @@ def test_running_test_pretrained_model():
# correct result and ok accuracy
assert result == 1, 'training failed to complete'
pretrained_model = testing_utils.load_model(
pretrained_model = tutils.load_model(
logger.experiment, trainer.checkpoint_callback.filepath, module_class=LightningTestModel
)
@ -101,18 +101,18 @@ def test_running_test_pretrained_model():
new_trainer.test(pretrained_model)
# test we have good test accuracy
testing_utils.assert_ok_test_acc(new_trainer)
testing_utils.clear_save_dir()
tutils.assert_ok_test_acc(new_trainer)
tutils.clear_save_dir()
def test_load_model_from_checkpoint():
testing_utils.reset_seed()
tutils.reset_seed()
"""Verify test() on pretrained model"""
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
trainer_options = dict(
show_progress_bar=False,
@ -142,27 +142,27 @@ def test_load_model_from_checkpoint():
new_trainer.test(pretrained_model)
# test we have good test accuracy
testing_utils.assert_ok_test_acc(new_trainer)
testing_utils.clear_save_dir()
tutils.assert_ok_test_acc(new_trainer)
tutils.clear_save_dir()
def test_running_test_pretrained_model_dp():
testing_utils.reset_seed()
tutils.reset_seed()
"""Verify test() on pretrained model"""
if not testing_utils.can_run_gpu_test():
if not tutils.can_run_gpu_test():
return
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
# logger file to get meta
logger = testing_utils.get_test_tube_logger(False)
logger = tutils.get_test_tube_logger(False)
# logger file to get weights
checkpoint = testing_utils.init_checkpoint_callback(logger)
checkpoint = tutils.init_checkpoint_callback(logger)
trainer_options = dict(
show_progress_bar=True,
@ -181,16 +181,16 @@ def test_running_test_pretrained_model_dp():
# correct result and ok accuracy
assert result == 1, 'training failed to complete'
pretrained_model = testing_utils.load_model(logger.experiment,
trainer.checkpoint_callback.filepath,
module_class=LightningTestModel)
pretrained_model = tutils.load_model(logger.experiment,
trainer.checkpoint_callback.filepath,
module_class=LightningTestModel)
new_trainer = Trainer(**trainer_options)
new_trainer.test(pretrained_model)
# test we have good test accuracy
testing_utils.assert_ok_test_acc(new_trainer)
testing_utils.clear_save_dir()
tutils.assert_ok_test_acc(new_trainer)
tutils.clear_save_dir()
def test_dp_resume():
@ -198,12 +198,12 @@ def test_dp_resume():
Make sure DP continues training correctly
:return:
"""
if not testing_utils.can_run_gpu_test():
if not tutils.can_run_gpu_test():
return
testing_utils.reset_seed()
tutils.reset_seed()
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
trainer_options = dict(
@ -213,14 +213,14 @@ def test_dp_resume():
distributed_backend='dp',
)
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
# get logger
logger = testing_utils.get_test_tube_logger(debug=False)
logger = tutils.get_test_tube_logger(debug=False)
# exp file to get weights
# logger file to get weights
checkpoint = testing_utils.init_checkpoint_callback(logger)
checkpoint = tutils.init_checkpoint_callback(logger)
# add these to the trainer options
trainer_options['logger'] = logger
@ -244,7 +244,7 @@ def test_dp_resume():
trainer.hpc_save(save_dir, logger)
# init new trainer
new_logger = testing_utils.get_test_tube_logger(version=logger.version)
new_logger = tutils.get_test_tube_logger(version=logger.version)
trainer_options['logger'] = new_logger
trainer_options['checkpoint_callback'] = ModelCheckpoint(save_dir)
trainer_options['train_percent_check'] = 0.2
@ -262,7 +262,7 @@ def test_dp_resume():
dp_model.eval()
dataloader = trainer.get_train_dataloader()
testing_utils.run_prediction(dataloader, dp_model, dp=True)
tutils.run_prediction(dataloader, dp_model, dp=True)
# new model
model = LightningTestModel(hparams)
@ -275,7 +275,7 @@ def test_dp_resume():
model.freeze()
model.unfreeze()
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_cpu_restore_training():
@ -283,16 +283,16 @@ def test_cpu_restore_training():
Verify continue training session on CPU
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
# logger file to get meta
test_logger_version = 10
logger = testing_utils.get_test_tube_logger(False, version=test_logger_version)
logger = tutils.get_test_tube_logger(False, version=test_logger_version)
trainer_options = dict(
max_nb_epochs=2,
@ -314,7 +314,7 @@ def test_cpu_restore_training():
# wipe-out trainer and model
# retrain with not much data... this simulates picking training back up after slurm
# we want to see if the weights come back correctly
new_logger = testing_utils.get_test_tube_logger(False, version=test_logger_version)
new_logger = tutils.get_test_tube_logger(False, version=test_logger_version)
trainer_options = dict(
max_nb_epochs=2,
val_check_interval=0.50,
@ -335,7 +335,7 @@ def test_cpu_restore_training():
# haven't trained with the new loaded model
trainer.model.eval()
for dataloader in trainer.get_val_dataloaders():
testing_utils.run_prediction(dataloader, trainer.model)
tutils.run_prediction(dataloader, trainer.model)
model.on_sanity_check_start = assert_good_acc
@ -343,7 +343,7 @@ def test_cpu_restore_training():
# and our hook to predict using current model before any more weight updates
trainer.fit(model)
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_model_saving_loading():
@ -351,15 +351,15 @@ def test_model_saving_loading():
Tests use case where trainer saves the model, and user loads it from tags independently
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
# logger file to get meta
logger = testing_utils.get_test_tube_logger(False)
logger = tutils.get_test_tube_logger(False)
trainer_options = dict(
max_nb_epochs=1,
@ -402,7 +402,7 @@ def test_model_saving_loading():
new_pred = model_2(x)
assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1
testing_utils.clear_save_dir()
tutils.clear_save_dir()
if __name__ == '__main__':

View File

@ -16,7 +16,7 @@ from pytorch_lightning.testing import (
)
from pytorch_lightning.trainer import trainer_io
from pytorch_lightning.trainer.logging_mixin import TrainerLoggingMixin
from . import testing_utils
import tests.utils as tutils
def test_no_val_module():
@ -24,19 +24,19 @@ def test_no_val_module():
Tests use case where trainer saves the model, and user loads it from tags independently
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
class CurrentTestModel(LightningTestModelBase):
pass
model = CurrentTestModel(hparams)
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
# logger file to get meta
logger = testing_utils.get_test_tube_logger(False)
logger = tutils.get_test_tube_logger(False)
trainer_options = dict(
max_nb_epochs=1,
@ -63,7 +63,7 @@ def test_no_val_module():
model_2.eval()
# make prediction
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_no_val_end_module():
@ -71,18 +71,18 @@ def test_no_val_end_module():
Tests use case where trainer saves the model, and user loads it from tags independently
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
class CurrentTestModel(LightningValidationStepMixin, LightningTestModelBase):
pass
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = CurrentTestModel(hparams)
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
# logger file to get meta
logger = testing_utils.get_test_tube_logger(False)
logger = tutils.get_test_tube_logger(False)
trainer_options = dict(
max_nb_epochs=1,
@ -109,11 +109,11 @@ def test_no_val_end_module():
model_2.eval()
# make prediction
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_gradient_accumulation_scheduling():
testing_utils.reset_seed()
tutils.reset_seed()
"""
Test grad accumulation by the freq of optimizer updates
@ -170,7 +170,7 @@ def test_gradient_accumulation_scheduling():
# clear gradients
optimizer.zero_grad()
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
schedule = {1: 2, 3: 4}
@ -187,13 +187,13 @@ def test_gradient_accumulation_scheduling():
def test_loading_meta_tags():
testing_utils.reset_seed()
tutils.reset_seed()
from argparse import Namespace
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
# save tags
logger = testing_utils.get_test_tube_logger(False)
logger = tutils.get_test_tube_logger(False)
logger.log_hyperparams(Namespace(some_str='a_str', an_int=1, a_float=2.0))
logger.log_hyperparams(hparams)
logger.save()
@ -206,12 +206,12 @@ def test_loading_meta_tags():
assert tags.batch_size == 32 and tags.hidden_dim == 1000
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_dp_output_reduce():
mixin = TrainerLoggingMixin()
testing_utils.reset_seed()
tutils.reset_seed()
# test identity when we have a single gpu
out = torch.rand(3, 1)
@ -240,11 +240,11 @@ def test_model_checkpoint_options():
def mock_save_function(filepath):
open(filepath, 'a').close()
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
# simulated losses
save_dir = testing_utils.init_save_dir()
save_dir = tutils.init_save_dir()
losses = [10, 9, 2.8, 5, 2.5]
# -----------------
@ -262,7 +262,7 @@ def test_model_checkpoint_options():
for i in range(0, len(losses)):
assert f'_ckpt_epoch_{i}.ckpt' in file_lists
testing_utils.clear_save_dir()
tutils.clear_save_dir()
# -----------------
# CASE K=0 (none)
@ -275,7 +275,7 @@ def test_model_checkpoint_options():
assert len(file_lists) == 0, "Should save 0 models when save_top_k=0"
testing_utils.clear_save_dir()
tutils.clear_save_dir()
# -----------------
# CASE K=1 (2.5, epoch 4)
@ -289,7 +289,7 @@ def test_model_checkpoint_options():
assert len(file_lists) == 1, "Should save 1 model when save_top_k=1"
assert 'test_prefix_ckpt_epoch_4.ckpt' in file_lists
testing_utils.clear_save_dir()
tutils.clear_save_dir()
# -----------------
# CASE K=2 (2.5 epoch 4, 2.8 epoch 2)
@ -308,7 +308,7 @@ def test_model_checkpoint_options():
assert '_ckpt_epoch_2.ckpt' in file_lists
assert 'other_file.ckpt' in file_lists
testing_utils.clear_save_dir()
tutils.clear_save_dir()
# -----------------
# CASE K=4 (save all 4 models)
@ -323,7 +323,7 @@ def test_model_checkpoint_options():
assert len(file_lists) == 4, 'Should save all 4 models when save_top_k=4 within same epoch'
testing_utils.clear_save_dir()
tutils.clear_save_dir()
# -----------------
# CASE K=3 (save the 2nd, 3rd, 4th model)
@ -341,13 +341,13 @@ def test_model_checkpoint_options():
assert '_ckpt_epoch_0_v1.ckpt' in file_lists
assert '_ckpt_epoch_0.ckpt' in file_lists
testing_utils.clear_save_dir()
tutils.clear_save_dir()
def test_model_freeze_unfreeze():
testing_utils.reset_seed()
tutils.reset_seed()
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
model.freeze()
@ -359,7 +359,7 @@ def test_multiple_val_dataloader():
Verify multiple val_dataloader
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
class CurrentTestModel(
LightningValidationMultipleDataloadersMixin,
@ -367,7 +367,7 @@ def test_multiple_val_dataloader():
):
pass
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = CurrentTestModel(hparams)
# logger file to get meta
@ -390,7 +390,7 @@ def test_multiple_val_dataloader():
# make sure predictions are good for each val set
for dataloader in trainer.get_val_dataloaders():
testing_utils.run_prediction(dataloader, trainer.model)
tutils.run_prediction(dataloader, trainer.model)
def test_multiple_test_dataloader():
@ -398,7 +398,7 @@ def test_multiple_test_dataloader():
Verify multiple test_dataloader
:return:
"""
testing_utils.reset_seed()
tutils.reset_seed()
class CurrentTestModel(
LightningTestMultipleDataloadersMixin,
@ -406,7 +406,7 @@ def test_multiple_test_dataloader():
):
pass
hparams = testing_utils.get_hparams()
hparams = tutils.get_hparams()
model = CurrentTestModel(hparams)
# logger file to get meta
@ -426,7 +426,7 @@ def test_multiple_test_dataloader():
# make sure predictions are good for each test set
for dataloader in trainer.get_test_dataloaders():
testing_utils.run_prediction(dataloader, trainer.model)
tutils.run_prediction(dataloader, trainer.model)
# run the test method
trainer.test()

View File

@ -52,7 +52,7 @@ def run_model_test_no_loggers(trainer_options, model, hparams, on_gpu=True, min_
clear_save_dir()
def run_gpu_model_test(trainer_options, model, hparams, on_gpu=True):
def run_model_test(trainer_options, model, hparams, on_gpu=True):
save_dir = init_save_dir()
# logger file to get meta