lightning/docs/source/starter/converting.rst

237 lines
9.1 KiB
ReStructuredText
Raw Normal View History

.. testsetup:: *
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.core.datamodule import LightningDataModule
from pytorch_lightning.trainer.trainer import Trainer
.. _converting:
######################################
How to organize PyTorch into Lightning
######################################
To enable your code to work with Lightning, here's how to organize PyTorch into Lightning:
--------
*******************************
1. Move your Computational Code
*******************************
Move the model architecture and forward pass to your :class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode::
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
class LitModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.layer_1 = nn.Linear(28 * 28, 128)
self.layer_2 = nn.Linear(128, 10)
def forward(self, x):
x = x.view(x.size(0), -1)
x = self.layer_1(x)
x = F.relu(x)
x = self.layer_2(x)
return x
--------
********************************************
2. Move the Optimizer(s) and LR Scheduler(s)
********************************************
Move your optimizers to the :meth:`~pytorch_lightning.core.lightning.LightningModule.configure_optimizers` hook.
.. testcode::
class LitModel(pl.LightningModule):
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
return [optimizer], [lr_scheduler]
--------
*******************************
3. Configure the Training Logic
*******************************
Lightning automates the training loop for you and manages all of the associated components such as: epoch and batch tracking, optimizers and schedulers,
and metric reduction. As a user, you just need to define how your model behaves with a batch of training data within the
:meth:`~pytorch_lightning.core.lightning.LightningModule.training_step` method. When using Lightning, simply override the
:meth:`~pytorch_lightning.core.lightning.LightningModule.training_step` method which takes the current ``batch`` and the ``batch_idx``
as arguments. Optionally, it can take ``optimizer_idx`` if your LightningModule defines multiple optimizers within its
:meth:`~pytorch_lightning.core.lightning.LightningModule.configure_optimizers` hook.
.. testcode::
class LitModel(pl.LightningModule):
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
return loss
--------
*********************************
4. Configure the Validation Logic
*********************************
Lightning also automates the validation loop for you and manages all of the associated components such as: epoch and batch tracking, and metrics reduction. As a user,
you just need to define how your model behaves with a batch of validation data within the :meth:`~pytorch_lightning.core.lightning.LightningModule.validation_step`
method. When using Lightning, simply override the :meth:`~pytorch_lightning.core.lightning.LightningModule.validation_step` method which takes the current
``batch`` and the ``batch_idx`` as arguments. Optionally, it can take ``dataloader_idx`` if you configure multiple dataloaders.
To add an (optional) validation loop add logic to the
:meth:`~pytorch_lightning.core.lightning.LightningModule.validation_step` hook (make sure to use the hook parameters, ``batch`` and ``batch_idx`` in this case).
.. testcode::
class LitModel(pl.LightningModule):
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
val_loss = F.cross_entropy(y_hat, y)
self.log("val_loss", val_loss)
Additionally, you can run only the validation loop using :meth:`~pytorch_lightning.trainer.trainer.Trainer.validate` method.
.. code-block:: python
model = LitModel()
trainer.validate(model)
.. note:: ``model.eval()`` and ``torch.no_grad()`` are called automatically for validation.
.. tip:: ``trainer.validate()`` loads the best checkpoint automatically by default if checkpointing was enabled during fitting.
--------
**************************
5. Configure Testing Logic
**************************
Lightning automates the testing loop for you and manages all the associated components, such as epoch and batch tracking, metrics reduction. As a user,
you just need to define how your model behaves with a batch of testing data within the :meth:`~pytorch_lightning.core.lightning.LightningModule.test_step`
method. When using Lightning, simply override the :meth:`~pytorch_lightning.core.lightning.LightningModule.test_step` method which takes the current
``batch`` and the ``batch_idx`` as arguments. Optionally, it can take ``dataloader_idx`` if you configure multiple dataloaders.
.. testcode::
class LitModel(pl.LightningModule):
def test_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
test_loss = F.cross_entropy(y_hat, y)
self.log("test_loss", test_loss)
The test loop isn't used within :meth:`~pytorch_lightning.trainer.trainer.Trainer.fit`, therefore, you would need to explicitly call :meth:`~pytorch_lightning.trainer.trainer.Trainer.test`.
.. code-block:: python
model = LitModel()
trainer.test(model)
.. note:: ``model.eval()`` and ``torch.no_grad()`` are called automatically for testing.
.. tip:: ``trainer.test()`` loads the best checkpoint automatically by default if checkpointing is enabled.
--------
*****************************
6. Configure Prediction Logic
*****************************
Lightning automates the prediction loop for you and manages all of the associated components such as epoch and batch tracking. As a user,
you just need to define how your model behaves with a batch of data within the :meth:`~pytorch_lightning.core.lightning.LightningModule.predict_step`
method. When using Lightning, simply override the :meth:`~pytorch_lightning.core.lightning.LightningModule.predict_step` method which takes the current
``batch`` and the ``batch_idx`` as arguments. Optionally, it can take ``dataloader_idx`` if you configure multiple dataloaders.
If you don't override ``predict_step`` hook, it by default calls :meth:`~pytorch_lightning.core.lightning.LightningModule.forward` method on the batch.
.. testcode::
class LitModel(LightningModule):
def predict_step(self, batch, batch_idx):
x, y = batch
pred = self(x)
return pred
The predict loop will not be used until you call :meth:`~pytorch_lightning.trainer.trainer.Trainer.predict`.
.. code-block:: python
model = LitModel()
trainer.predict(model)
.. note:: ``model.eval()`` and ``torch.no_grad()`` are called automatically for testing.
.. tip:: ``trainer.predict()`` loads the best checkpoint automatically by default if checkpointing is enabled.
--------
******************************************
7. Remove any .cuda() or .to(device) Calls
******************************************
Your :doc:`LightningModule <../common/lightning_module>` can automatically run on any hardware!
If you have any explicit calls to ``.cuda()`` or ``.to(device)``, you can remove them since Lightning makes sure that the data coming from :class:`~torch.utils.data.DataLoader`
and all the :class:`~torch.nn.Module` instances initialized inside ``LightningModule.__init__`` are moved to the respective devices automatically.
.. testcode::
class LitModel(LightningModule):
def __init__(self):
super().__init__()
self.register_buffer("running_mean", torch.zeros(num_features))
If you still need to access the current device, you can use ``self.device`` anywhere in ``LightningModule`` except ``__init__`` method. You are initializing a
:class:`~torch.Tensor` within ``LightningModule.__init__`` method and want it to be moved to the device automatically you must :meth:`~torch.nn.Module.register_buffer`
to register it as a parameter.
.. testcode::
class LitModel(LightningModule):
def training_step(self, batch, batch_idx):
z = torch.randn(4, 5, device=self.device)
...
--------
********************
8. Use your own data
********************
To use your DataLoaders, you can override the respective dataloader hooks in the :class:`~pytorch_lightning.core.lightning.LightningModule`:
.. testcode::
class LitModel(LightningModule):
def train_dataloader(self):
return DataLoader(...)
def val_dataloader(self):
return DataLoader(...)
def test_dataloader(self):
return DataLoader(...)
def predict_dataloader(self):
return DataLoader(...)
Alternatively, you can pass your dataloaders in one of the following ways:
* Pass in the dataloaders explictly inside ``trainer.fit/.validate/.test/.predict`` calls.
* Use a :ref:`LightningDataModule <datamodules>`.
Checkout :ref:`data` doc to understand data management within Lightning.