To enable your code to work with Lightning, here's how to organize PyTorch into Lightning
1. Move your computational code
===============================
Move the model architecture and forward pass to your :class:`~pytorch_lightning.core.LightningModule`.
..code-block::
class LitModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.layer_1 = torch.nn.Linear(28 * 28, 128)
self.layer_2 = torch.nn.Linear(128, 10)
def forward(self, x):
x = x.view(x.size(0), -1)
x = self.layer_1(x)
x = F.relu(x)
x = self.layer_2(x)
return x
2. Move the optimizer(s) and schedulers
=======================================
Move your optimizers to :func:`pytorch_lightning.core.LightningModule.configure_optimizers` hook. Make sure to use the hook parameters (self in this case).
Lightning automates most of the trining for you, the epoch and batch iterations, all you need to keep is the training step logic. This should go into :func:`pytorch_lightning.core.LightningModule.training_step` hook (make sure to use the hook parameters, self in this case):
..code-block::
class LitModel(pl.LightningModule):
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
return loss
4. Find the val loop "meat"
===========================
To add an (optional) validation loop add logic to :func:`pytorch_lightning.core.LightningModule.validation_step` hook (make sure to use the hook parameters, self in this case).
..testcode::
class LitModel(LightningModule):
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
val_loss = F.cross_entropy(y_hat, y)
return val_loss
..note:: model.eval() and torch.no_grad() are called automatically for validation
5. Find the test loop "meat"
============================
To add an (optional) test loop add logic to :func:`pytorch_lightning.core.LightningModule.test_step` hook (make sure to use the hook parameters, self in this case).
..code-block::
class LitModel(pl.LightningModule):
def test_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
return loss
..note:: model.eval() and torch.no_grad() are called automatically for testing.
The test loop will not be used until you call.
..code-block::
trainer.test()
..note:: .test() loads the best checkpoint automatically
6. Remove any .cuda() or to.device() calls
==========================================
Your :class:`~pytorch_lightning.core.LightningModule` can automatically run on any hardware!