lightning/tests/base/models.py

203 lines
6.3 KiB
Python
Raw Normal View History

import os
from collections import OrderedDict
from typing import Dict
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
try:
from test_tube import HyperOptArgumentParser
except ImportError:
# TODO: this should be discussed and moved out of this package
raise ImportError('Missing test-tube package.')
from pytorch_lightning.core.lightning import LightningModule
# TODO: remove after getting own MNIST
# TEMPORAL FIX, https://github.com/pytorch/vision/issues/1938
import urllib.request
opener = urllib.request.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
urllib.request.install_opener(opener)
class TestingMNIST(MNIST):
def __init__(self, root, train=True, transform=None, target_transform=None,
download=False, num_samples=8000):
super().__init__(
root,
train=train,
transform=transform,
target_transform=target_transform,
download=download
)
# take just a subset of MNIST dataset
self.data = self.data[:num_samples]
self.targets = self.targets[:num_samples]
class DictHparamsModel(LightningModule):
def __init__(self, hparams: Dict):
super().__init__()
proper checkpoint implementation (#1043) * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * enabled early stopping/checkpooiunt even without val step * name formatting * version * testing * add test * fix test * Update model_checkpoint.py * doctests * pylint * tests * debug * debug * enabled early stopping/checkpooiunt even without val step * fix MNIST download (#1044) * fix MNIST download * simple * name formatting * version * testing * add test * fix test * doctests * tests * debug * debug * rebased 1041 * rebased 1041 * tests * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 * rebased 1041 Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-03-05 04:02:19 +00:00
self.hparams = hparams
self.l1 = torch.nn.Linear(hparams.get('in_features'), hparams['out_features'])
def forward(self, x):
return torch.relu(self.l1(x.view(x.size(0), -1)))
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
return {'loss': F.cross_entropy(y_hat, y)}
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.02)
def train_dataloader(self):
return DataLoader(TestingMNIST(os.getcwd(), train=True, download=True,
transform=transforms.ToTensor()), batch_size=32)
class TestModelBase(LightningModule):
"""
Refactor test modules (#180) * Expectopatronum implement #89 (#182) * rename validate -> evaluate; implement test logic; allow multiple test_loaders * add test_step and test_end to LightningModule * add in_test_mode to pretraining to implement case 2 (test pretrained model) * fix code style issues * LightningTestModel: add optional second test set, implement test_step and test_end * implemented test for multiple test_dataloaders; fixed typo * add two test cases for #89 * add documentation for test_step, test_end; fix computation of loss in validation_step example * Update trainer.py * Update trainer.py * Update trainer.py * Update trainer.py * Update trainer.py * Update trainer.py * Added proper dp ddp routing calls for test mode * Update trainer.py * Update test_models.py * Update trainer.py * Update trainer.py * Update override_data_parallel.py * Update test_models.py * Update test_models.py * Update trainer.py * Update trainer.py * Update trainer.py * Update test_models.py * Update test_models.py * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * Update trainer.py * Update override_data_parallel.py * Update debug.py * Update lm_test_module.py * Update test_models.py * release v0.4.8 * Update README.md * add training loop docs * testing loop docs * testing loop docs * Convert __dataloader to _dataloader This will let inherited classes use it * Factor common test model setup into base class * Specialized test modules inherit from LightningTestModelBase * Fix __is_overriden so that it works with more complicated inheritance * Use mixins to add functionality to test models * Fix test with no val_dataloader * Remove unused imports * Get rid of wild card import * Update trainer.py * Update lm_test_module.py
2019-09-02 19:46:16 +00:00
Base LightningModule for testing. Implements only the required
interface
"""
def __init__(self, hparams, force_remove_distributed_sampler=False):
"""
Pass in parsed HyperOptArgumentParser to the model
:param hparams:
"""
# init superclass
super().__init__()
self.hparams = hparams
self.batch_size = hparams.batch_size
# if you specify an example input, the summary will show input/output for each layer
self.example_input_array = torch.rand(5, 28 * 28)
# remove to test warning for dist sampler
self.force_remove_distributed_sampler = force_remove_distributed_sampler
# build model
self.__build_model()
# ---------------------
# MODEL SETUP
# ---------------------
def __build_model(self):
"""
Layout model
:return:
"""
self.c_d1 = nn.Linear(in_features=self.hparams.in_features,
out_features=self.hparams.hidden_dim)
self.c_d1_bn = nn.BatchNorm1d(self.hparams.hidden_dim)
self.c_d1_drop = nn.Dropout(self.hparams.drop_prob)
self.c_d2 = nn.Linear(in_features=self.hparams.hidden_dim,
out_features=self.hparams.out_features)
# ---------------------
# TRAINING
# ---------------------
def forward(self, x):
"""
No special modification required for lightning, define as you normally would
:param x:
:return:
"""
x = self.c_d1(x)
x = torch.tanh(x)
x = self.c_d1_bn(x)
x = self.c_d1_drop(x)
x = self.c_d2(x)
logits = F.log_softmax(x, dim=1)
return logits
def loss(self, labels, logits):
nll = F.nll_loss(logits, labels)
return nll
def training_step(self, batch, batch_idx, optimizer_idx=None):
"""
Lightning calls this inside the training loop
:param batch:
:return:
"""
# forward pass
x, y = batch
x = x.view(x.size(0), -1)
y_hat = self(x)
# calculate loss
loss_val = self.loss(y, y_hat)
# in DP mode (default) make sure if result is scalar, there's another dim in the beginning
if self.trainer.use_dp:
loss_val = loss_val.unsqueeze(0)
# alternate possible outputs to test
if self.trainer.batch_idx % 1 == 0:
output = OrderedDict({
'loss': loss_val,
'progress_bar': {'some_val': loss_val * loss_val},
'log': {'train_some_val': loss_val * loss_val},
})
return output
if self.trainer.batch_idx % 2 == 0:
return loss_val
# ---------------------
# TRAINING SETUP
# ---------------------
def configure_optimizers(self):
"""
return whatever optimizers we want here.
:return: list of optimizers
"""
# try no scheduler for this model (testing purposes)
if self.hparams.optimizer_name == 'lbfgs':
2019-10-05 14:47:18 +00:00
optimizer = optim.LBFGS(self.parameters(), lr=self.hparams.learning_rate)
else:
optimizer = optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10)
return [optimizer], [scheduler]
Clean up dataloader logic (#926) * added get dataloaders directly using a getter * deleted decorator * added prepare_data hook * refactored dataloader init * refactored dataloader init * added dataloader reset flag and main loop * added dataloader reset flag and main loop * added dataloader reset flag and main loop * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixes #909 * fixes #909 * bug fix * Fixes #902
2020-02-25 03:23:25 +00:00
def prepare_data(self):
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (1.0,))])
_ = TestingMNIST(root=self.hparams.data_root, train=True,
transform=transform, download=True, num_samples=2000)
Clean up dataloader logic (#926) * added get dataloaders directly using a getter * deleted decorator * added prepare_data hook * refactored dataloader init * refactored dataloader init * added dataloader reset flag and main loop * added dataloader reset flag and main loop * added dataloader reset flag and main loop * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixes #909 * fixes #909 * bug fix * Fixes #902
2020-02-25 03:23:25 +00:00
Refactor test modules (#180) * Expectopatronum implement #89 (#182) * rename validate -> evaluate; implement test logic; allow multiple test_loaders * add test_step and test_end to LightningModule * add in_test_mode to pretraining to implement case 2 (test pretrained model) * fix code style issues * LightningTestModel: add optional second test set, implement test_step and test_end * implemented test for multiple test_dataloaders; fixed typo * add two test cases for #89 * add documentation for test_step, test_end; fix computation of loss in validation_step example * Update trainer.py * Update trainer.py * Update trainer.py * Update trainer.py * Update trainer.py * Update trainer.py * Added proper dp ddp routing calls for test mode * Update trainer.py * Update test_models.py * Update trainer.py * Update trainer.py * Update override_data_parallel.py * Update test_models.py * Update test_models.py * Update trainer.py * Update trainer.py * Update trainer.py * Update test_models.py * Update test_models.py * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * debug * Update trainer.py * Update override_data_parallel.py * Update debug.py * Update lm_test_module.py * Update test_models.py * release v0.4.8 * Update README.md * add training loop docs * testing loop docs * testing loop docs * Convert __dataloader to _dataloader This will let inherited classes use it * Factor common test model setup into base class * Specialized test modules inherit from LightningTestModelBase * Fix __is_overriden so that it works with more complicated inheritance * Use mixins to add functionality to test models * Fix test with no val_dataloader * Remove unused imports * Get rid of wild card import * Update trainer.py * Update lm_test_module.py
2019-09-02 19:46:16 +00:00
def _dataloader(self, train):
# init data generators
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (1.0,))])
dataset = TestingMNIST(root=self.hparams.data_root, train=train,
Clean up dataloader logic (#926) * added get dataloaders directly using a getter * deleted decorator * added prepare_data hook * refactored dataloader init * refactored dataloader init * added dataloader reset flag and main loop * added dataloader reset flag and main loop * added dataloader reset flag and main loop * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixes #909 * fixes #909 * bug fix * Fixes #902
2020-02-25 03:23:25 +00:00
transform=transform, download=False, num_samples=2000)
# when using multi-node we need to add the datasampler
batch_size = self.hparams.batch_size
loader = DataLoader(
dataset=dataset,
batch_size=batch_size,
shuffle=True
)
return loader