mirror of https://github.com/tqdm/tqdm.git
cliclosemberconsolediscordguijupyterkerasmeterpandasparallelprogressprogress-barprogressbarprogressmeterpythonratestarred-repostarred-tqdm-repotelegramterminaltimeutilities
d85e447ce1 | ||
---|---|---|
benchmarks | ||
examples | ||
images | ||
tqdm | ||
.coveragerc | ||
.gitignore | ||
.mailmap | ||
.travis.yml | ||
CONTRIBUTE | ||
LICENCE | ||
MANIFEST.in | ||
Makefile | ||
README.rst | ||
asv.conf.json | ||
codecov.yml | ||
logo.png | ||
setup.cfg | ||
setup.py | ||
tox.ini |
README.rst
|Logo| tqdm ==== |PyPI-Status| |PyPI-Versions| |Conda-Forge-Status| |Build-Status| |Coverage-Status| |Branch-Coverage-Status| |Codacy-Grade| |DOI-URI| |LICENCE| ``tqdm`` means "progress" in Arabic (taqadum, تقدّم) and an abbreviation for "I love you so much" in Spanish (te quiero demasiado). Instantly make your loops show a smart progress meter - just wrap any iterable with ``tqdm(iterable)``, and you're done! .. code:: python from tqdm import tqdm for i in tqdm(range(9)): ... Here's what the output looks like: ``76%|████████████████████████████ | 7568/10000 [00:33<00:10, 229.00it/s]`` ``trange(N)`` can be also used as a convenient shortcut for ``tqdm(xrange(N))``. |Screenshot| Screenshot using `bpython <http://www.bpython-interpreter.org/>`__ It can also be executed as a module with pipes: .. code:: sh $ seq 9999999 | tqdm --unit_scale | wc -l 10.0Mit [00:02, 3.58Mit/s] 9999999 Overhead is low -- about 60ns per iteration (80ns with ``tqdm_gui``), and is unit tested against performance regression. By comparison, the well established `ProgressBar <https://github.com/niltonvolpato/python-progressbar>`__ has an 800ns/iter overhead. In addition to its low overhead, ``tqdm`` uses smart algorithms to predict the remaining time and to skip unnecessary iteration displays, which allows for a negligible overhead in most cases. ``tqdm`` works on any platform (Linux, Windows, Mac, FreeBSD, Solaris/SunOS), in any console or in a GUI, and is also friendly with IPython/Jupyter notebooks. ``tqdm`` does not require any library (not even curses!) to run, just a vanilla Python interpreter will do and an environment supporting ``carriage return \r`` and ``line feed \n`` control characters. ------------------------------------------ .. contents:: Table of contents :backlinks: top :local: Installation ------------ Latest PyPI stable release ~~~~~~~~~~~~~~~~~~~~~~~~~~ |PyPI-Status| .. code:: sh pip install tqdm Latest development release on github ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |GitHub-Status| |GitHub-Stars| |GitHub-Forks| Pull and install in the current directory: .. code:: sh pip install -e git+https://github.com/tqdm/tqdm.git@master#egg=tqdm Latest Conda release ~~~~~~~~~~~~~~~~~~~~ |Conda-Forge-Status| .. code:: sh conda install -c conda-forge tqdm Changelog --------- The list of all changes is available either on GitHub's Releases: |GitHub-Status| or on crawlers such as `allmychanges.com <https://allmychanges.com/p/python/tqdm/>`_. Usage ----- ``tqdm`` is very versatile and can be used in a number of ways. The three main ones are given below. Iterable-based ~~~~~~~~~~~~~~ Wrap ``tqdm()`` around any iterable: .. code:: python text = "" for char in tqdm(["a", "b", "c", "d"]): text = text + char ``trange(i)`` is a special optimised instance of ``tqdm(range(i))``: .. code:: python for i in trange(100): pass Instantiation outside of the loop allows for manual control over ``tqdm()``: .. code:: python pbar = tqdm(["a", "b", "c", "d"]) for char in pbar: pbar.set_description("Processing %s" % char) Manual ~~~~~~ Manual control on ``tqdm()`` updates by using a ``with`` statement: .. code:: python with tqdm(total=100) as pbar: for i in range(10): pbar.update(10) If the optional variable ``total`` (or an iterable with ``len()``) is provided, predictive stats are displayed. ``with`` is also optional (you can just assign ``tqdm()`` to a variable, but in this case don't forget to ``del`` or ``close()`` at the end: .. code:: python pbar = tqdm(total=100) for i in range(10): pbar.update(10) pbar.close() Module ~~~~~~ Perhaps the most wonderful use of ``tqdm`` is in a script or on the command line. Simply inserting ``tqdm`` (or ``python -m tqdm``) between pipes will pass through all ``stdin`` to ``stdout`` while printing progress to ``stderr``. The example below demonstrated counting the number of lines in all python files in the current directory, with timing information included. .. code:: sh $ time find . -name '*.py' -exec cat \{} \; | wc -l 857365 real 0m3.458s user 0m0.274s sys 0m3.325s $ time find . -name '*.py' -exec cat \{} \; | tqdm | wc -l 857366it [00:03, 246471.31it/s] 857365 real 0m3.585s user 0m0.862s sys 0m3.358s Note that the usual arguments for ``tqdm`` can also be specified. .. code:: sh $ find . -name '*.py' -exec cat \{} \; | tqdm --unit loc --unit_scale --total 857366 >> /dev/null 100%|███████████████████████████████████| 857K/857K [00:04<00:00, 246Kloc/s] Backing up a large directory? .. code:: sh $ 7z a -bd -r backup.7z docs/ | grep Compressing | tqdm --total $(find docs/ -type f | wc -l) --unit files >> backup.log 100%|███████████████████████████████▉| 8014/8014 [01:37<00:00, 82.29files/s] Help! ----- The most common issues relate to excessive output on multiple lines, instead of a neat one-line progress bar. - Consoles in general: require support for carriage return (``CR``, ``\r``). - Nested progress bars: * Consoles in general: require support for moving cursors up to the previous line. For example, `IDLE won't work <https://github.com/tqdm/tqdm/issues/191#issuecomment-230168030>`__. * Windows: additionally may require the python module ``colorama``. - Wrapping enumerated iterables: use ``enumerate(tqdm(...))`` instead of ``tqdm(enumerate(...))``. The same applies to ``numpy.ndenumerate``. This is because enumerate functions tend to hide the length of iterables. ``tqdm`` does not. If you come across any other difficulties, browse/open issues `here <https://github.com/tqdm/tqdm/issues?q=is%3Aissue>`__. Documentation ------------- |PyPI-Versions| |README-Hits| (Since 19 May 2016) .. code:: python class tqdm(object): """ Decorate an iterable object, returning an iterator which acts exactly like the original iterable, but prints a dynamically updating progressbar every time a value is requested. """ def __init__(self, iterable=None, desc=None, total=None, leave=True, file=sys.stderr, ncols=None, mininterval=0.1, maxinterval=10.0, miniters=None, ascii=None, disable=False, unit='it', unit_scale=False, dynamic_ncols=False, smoothing=0.3, bar_format=None, initial=0, position=None): Parameters ~~~~~~~~~~ * iterable : iterable, optional Iterable to decorate with a progressbar. Leave blank to manually manage the updates. * desc : str, optional Prefix for the progressbar. * total : int, optional The number of expected iterations. If (default: None), len(iterable) is used if possible. As a last resort, only basic progress statistics are displayed (no ETA, no progressbar). If ``gui`` is True and this parameter needs subsequent updating, specify an initial arbitrary large positive integer, e.g. int(9e9). * leave : bool, optional If [default: True], keeps all traces of the progressbar upon termination of iteration. * file : ``io.TextIOWrapper`` or ``io.StringIO``, optional Specifies where to output the progress messages [default: sys.stderr]. Uses ``file.write(str)`` and ``file.flush()`` methods. * ncols : int, optional The width of the entire output message. If specified, dynamically resizes the progressbar to stay within this bound. If unspecified, attempts to use environment width. The fallback is a meter width of 10 and no limit for the counter and statistics. If 0, will not print any meter (only stats). * mininterval : float, optional Minimum progress update interval, in seconds [default: 0.1]. * maxinterval : float, optional Maximum progress update interval, in seconds [default: 10.0]. * miniters : int, optional Minimum progress update interval, in iterations. If specified, will set ``mininterval`` to 0. * ascii : bool, optional If unspecified or False, use unicode (smooth blocks) to fill the meter. The fallback is to use ASCII characters ``1-9 #``. * disable : bool, optional Whether to disable the entire progressbar wrapper [default: False]. * unit : str, optional String that will be used to define the unit of each iteration [default: it]. * unit_scale : bool, optional If set, the number of iterations will be reduced/scaled automatically and a metric prefix following the International System of Units standard will be added (kilo, mega, etc.) [default: False]. * dynamic_ncols : bool, optional If set, constantly alters ``ncols`` to the environment (allowing for window resizes) [default: False]. * smoothing : float, optional Exponential moving average smoothing factor for speed estimates (ignored in GUI mode). Ranges from 0 (average speed) to 1 (current/instantaneous speed) [default: 0.3]. * bar_format : str, optional Specify a custom bar string formatting. May impact performance. If unspecified, will use '{l_bar}{bar}{r_bar}', where l_bar is '{desc}{percentage:3.0f}%|' and r_bar is '| {n_fmt}/{total_fmt} [{elapsed_str}<{remaining_str}, {rate_fmt}]' Possible vars: bar, n, n_fmt, total, total_fmt, percentage, rate, rate_fmt, elapsed, remaining, l_bar, r_bar, desc. * initial : int, optional The initial counter value. Useful when restarting a progress bar [default: 0]. * position : int, optional Specify the line offset to print this bar (starting from 0) Automatic if unspecified. Useful to manage multiple bars at once (eg, from threads). Extra CLI Options ~~~~~~~~~~~~~~~~~ * delim : chr, optional Delimiting character [default: '\n']. Use '\0' for null. N.B.: on Windows systems, Python converts '\n' to '\r\n'. * buf_size : int, optional String buffer size in bytes [default: 256] used when ``delim`` is specified. * bytes : bool, optional If true, will count bytes and ignore ``delim``. Returns ~~~~~~~ * out : decorated iterator. .. code:: python def update(self, n=1): """ Manually update the progress bar, useful for streams such as reading files. E.g.: >>> t = tqdm(total=filesize) # Initialise >>> for current_buffer in stream: ... ... ... t.update(len(current_buffer)) >>> t.close() The last line is highly recommended, but possibly not necessary if ``t.update()`` will be called in such a way that ``filesize`` will be exactly reached and printed. Parameters ---------- n : int Increment to add to the internal counter of iterations [default: 1]. """ def close(self): """ Cleanup and (if leave=False) close the progressbar. """ def clear(self): """ Clear current bar display """ def refresh(self): """ Force refresh the display of this bar """ def write(cls, s, file=sys.stdout, end="\n"): """ Print a message via tqdm (without overlap with bars) """ def trange(*args, **kwargs): """ A shortcut for tqdm(xrange(*args), **kwargs). On Python3+ range is used instead of xrange. """ class tqdm_gui(tqdm): """ Experimental GUI version of tqdm! """ def tgrange(*args, **kwargs): """ Experimental GUI version of trange! """ class tqdm_notebook(tqdm): """ Experimental IPython/Jupyter Notebook widget using tqdm! """ def tnrange(*args, **kwargs): """ Experimental IPython/Jupyter Notebook widget using tqdm! """ Examples and Advanced Usage --------------------------- - See the `examples <https://github.com/tqdm/tqdm/tree/master/examples>`__ folder; - import the module and run ``help()``, or - consult the `wiki <https://github.com/tqdm/tqdm/wiki>`__. - this has an `excellent article <https://github.com/tqdm/tqdm/wiki/How-to-make-a-great-Progress-Bar>`__ on how to make a **great** progressbar. Nested progress bars ~~~~~~~~~~~~~~~~~~~~ ``tqdm`` supports nested progress bars. Here's an example: .. code:: python from tqdm import trange from time import sleep for i in trange(10, desc='1st loop'): for j in trange(5, desc='2nd loop', leave=False): for k in trange(100, desc='3nd loop'): sleep(0.01) On Windows `colorama <https://github.com/tartley/colorama>`__ will be used if available to produce a beautiful nested display. For manual control over positioning (e.g. for multi-threaded use), you may specify `position=n` where `n=0` for the outermost bar, `n=1` for the next, and so on. Hooks and callbacks ~~~~~~~~~~~~~~~~~~~ ``tqdm`` can easily support callbacks/hooks and manual updates. Here's an example with ``urllib``: **urllib.urlretrieve documentation** | [...] | If present, the hook function will be called once | on establishment of the network connection and once after each block read | thereafter. The hook will be passed three arguments; a count of blocks | transferred so far, a block size in bytes, and the total size of the file. | [...] .. code:: python import urllib from tqdm import tqdm def my_hook(t): """ Wraps tqdm instance. Don't forget to close() or __exit__() the tqdm instance once you're done with it (easiest using `with` syntax). Example ------- >>> with tqdm(...) as t: ... reporthook = my_hook(t) ... urllib.urlretrieve(..., reporthook=reporthook) """ last_b = [0] def inner(b=1, bsize=1, tsize=None): """ b : int, optional Number of blocks just transferred [default: 1]. bsize : int, optional Size of each block (in tqdm units) [default: 1]. tsize : int, optional Total size (in tqdm units). If [default: None] remains unchanged. """ if tsize is not None: t.total = tsize t.update((b - last_b[0]) * bsize) last_b[0] = b return inner eg_link = 'http://www.doc.ic.ac.uk/~cod11/matryoshka.zip' with tqdm(unit='B', unit_scale=True, miniters=1, desc=eg_link.split('/')[-1]) as t: # all optional kwargs urllib.urlretrieve(eg_link, filename='/dev/null', reporthook=my_hook(t), data=None) It is recommend to use ``miniters=1`` whenever there is potentially large differences in iteration speed (e.g. downloading a file over a patchy connection). Pandas Integration ~~~~~~~~~~~~~~~~~~ Due to popular demand we've added support for ``pandas`` -- here's an example for ``DataFrame.progress_apply`` and ``DataFrameGroupBy.progress_apply``: .. code:: python import pandas as pd import numpy as np from tqdm import tqdm df = pd.DataFrame(np.random.randint(0, 100, (100000, 6))) # Register `pandas.progress_apply` and `pandas.Series.map_apply` with `tqdm` # (can use `tqdm_gui`, `tqdm_notebook`, optional kwargs, etc.) tqdm.pandas(desc="my bar!") # Now you can use `progress_apply` instead of `apply` # and `progress_map` instead of `map` df.progress_apply(lambda x: x**2) # can also groupby: # df.groupby(0).progress_apply(lambda x: x**2) In case you're interested in how this works (and how to modify it for your own callbacks), see the `examples <https://github.com/tqdm/tqdm/tree/master/examples>`__ folder or import the module and run ``help()``. IPython/Jupyter Integration ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ IPython/Jupyter is supported via the `tqdm_notebook` submodule: .. code:: python from tqdm import tnrange, tqdm_notebook from time import sleep for i in tnrange(10, desc='1st loop'): for j in tqdm_notebook(xrange(100), desc='2nd loop'): sleep(0.01) In addition to `tqdm` features, the submodule provides a native Jupyter widget (compatible with IPython v1-v4 and Jupyter), fully working nested bars and color hints (blue: normal, green: completed, red: error/interrupt, light blue: no ETA); as demonstrated below. |Screenshot-Jupyter1| |Screenshot-Jupyter2| |Screenshot-Jupyter3| Writing messages ~~~~~~~~~~~~~~~~ Since ``tqdm`` uses a simple printing mechanism to display progress bars, you should not write any message in the terminal using ``print()``. To write messages in the terminal without any collision with ``tqdm`` bar display, a ``.write()`` method is provided: .. code:: python from tqdm import tqdm, trange from time import sleep bar = trange(10) for i in bar: # Print using tqdm class method .write() sleep(0.1) if not (i % 3): tqdm.write("Done task %i" % i) # Can also use bar.write() By default, this will print to standard output ``sys.stdout``. but you can specify any file-like object using the ``file`` argument. For example, this can be used to redirect the messages writing to a log file or class. Redirecting writing ~~~~~~~~~~~~~~~~~~~ If using a library that can print messages to the console, editing the library by replacing ``print()`` with ``tqdm.write()`` may not be desirable. In that case, redirecting ``sys.stdout`` to ``tqdm.write()`` is an option. To redirect ``sys.stdout``, create a file-like class that will write any input string to ``tqdm.write()``, and supply the arguments ``file=sys.stdout, dynamic_ncols=True``. A reusable canonical example is given below: .. code:: python from time import sleep import contextlib import sys from tqdm import tqdm class DummyTqdmFile(object): """Dummy file-like that will write to tqdm""" file = None def __init__(self, file): self.file = file def write(self, x): # Avoid print() second call (useless \n) if len(x.rstrip()) > 0: tqdm.write(x, file=self.file) @contextlib.contextmanager def stdout_redirect_to_tqdm(): save_stdout = sys.stdout try: sys.stdout = DummyTqdmFile(sys.stdout) yield save_stdout # Relay exceptions except Exception as exc: raise exc # Always restore sys.stdout if necessary finally: sys.stdout = save_stdout def blabla(): print("Foo blabla") # Redirect stdout to tqdm.write() (don't forget the `as save_stdout`) with stdout_redirect_to_tqdm() as save_stdout: # tqdm call need to specify sys.stdout, not sys.stderr (default) # and dynamic_ncols=True to autodetect console width for _ in tqdm(range(3), file=save_stdout, dynamic_ncols=True): blabla() sleep(.5) # After the `with`, printing is restored print('Done!') Monitoring thread, intervals and miniters ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ``tqdm`` implements a few tricks to to increase efficiency and reduce overhead. 1. Avoid unnecessary frequent bar refreshing: ``mininterval`` defines how long to wait between each refresh. ``tqdm`` always gets updated in the background, but it will diplay only every ``mininterval``. 2. Reduce number of calls to check system clock/time. 3. ``mininterval`` is more intuitive to configure than ``miniters``. A clever adjustment system ``dynamic_miniters`` will automatically adjust ``miniters`` to the amount of iterations that fit into time ``mininterval``. Essentially, ``tqdm`` will check if it's time to print without actually checking time. This behavior can be still be bypassed by manually setting ``miniters``. However, consider a case with a combination of fast and slow iterations. After a few fast iterations, ``dynamic_miniters`` will set ``miniters`` to a large number. When interation rate subsequently slows, ``miniters`` will remain large and thus reduce display update frequency. To address this: 4. ``maxinterval`` defines the maximum time between display refreshes. A concurrent monitoring thread checks for overdue updates and forces one where necessary. The monitoring thread should not have a noticeable overhead, and guarantees updates at least every 10 seconds by default. This value can be directly changed by setting the ``monitor_interval`` of any ``tqdm`` instance (i.e. ``t = tqdm.tqdm(...); t.monitor_interval = 2``). The monitor thread may be disabled application-wide by setting ``tqdm.tqdm.monitor_interval = 0`` before instantiatiation of any ``tqdm`` bar. Contributions ------------- All source code is hosted on `GitHub <https://github.com/tqdm/tqdm>`__. Contributions are welcome. See the `CONTRIBUTE <https://raw.githubusercontent.com/tqdm/tqdm/master/CONTRIBUTE>`__ file for more information. LICENCE ------- Open Source (OSI approved): |LICENCE| Citation information: |DOI-URI| Authors ------- Ranked by contributions. - Casper da Costa-Luis (casperdcl) - Stephen Larroque (lrq3000) - Hadrien Mary (hadim) - Noam Yorav-Raphael (noamraph)* - Ivan Ivanov (obiwanus) - Mikhail Korobov (kmike) `*` Original author |README-Hits| (Since 19 May 2016) .. |Logo| image:: https://raw.githubusercontent.com/tqdm/tqdm/master/logo.png .. |Screenshot| image:: https://raw.githubusercontent.com/tqdm/tqdm/master/images/tqdm.gif .. |Build-Status| image:: https://travis-ci.org/tqdm/tqdm.svg?branch=master :target: https://travis-ci.org/tqdm/tqdm .. |Coverage-Status| image:: https://coveralls.io/repos/tqdm/tqdm/badge.svg :target: https://coveralls.io/r/tqdm/tqdm .. |Branch-Coverage-Status| image:: https://codecov.io/github/tqdm/tqdm/coverage.svg?branch=master :target: https://codecov.io/github/tqdm/tqdm?branch=master .. |Codacy-Grade| image:: https://api.codacy.com/project/badge/Grade/3f965571598f44549c7818f29cdcf177 :target: https://www.codacy.com/app/tqdm/tqdm?utm_source=github.com&utm_medium=referral&utm_content=tqdm/tqdm&utm_campaign=Badge_Grade .. |GitHub-Status| image:: https://img.shields.io/github/tag/tqdm/tqdm.svg?maxAge=2592000 :target: https://github.com/tqdm/tqdm/releases .. |GitHub-Forks| image:: https://img.shields.io/github/forks/tqdm/tqdm.svg :target: https://github.com/tqdm/tqdm/network .. |GitHub-Stars| image:: https://img.shields.io/github/stars/tqdm/tqdm.svg :target: https://github.com/tqdm/tqdm/stargazers .. |PyPI-Status| image:: https://img.shields.io/pypi/v/tqdm.svg :target: https://pypi.python.org/pypi/tqdm .. |PyPI-Downloads| image:: https://img.shields.io/pypi/dm/tqdm.svg :target: https://pypi.python.org/pypi/tqdm .. |PyPI-Versions| image:: https://img.shields.io/pypi/pyversions/tqdm.svg :target: https://pypi.python.org/pypi/tqdm .. |Conda-Forge-Status| image:: https://anaconda.org/conda-forge/tqdm/badges/version.svg :target: https://anaconda.org/conda-forge/tqdm .. |LICENCE| image:: https://img.shields.io/pypi/l/tqdm.svg :target: https://raw.githubusercontent.com/tqdm/tqdm/master/LICENCE .. |DOI-URI| image:: https://zenodo.org/badge/21637/tqdm/tqdm.svg :target: https://zenodo.org/badge/latestdoi/21637/tqdm/tqdm .. |Screenshot-Jupyter1| image:: https://raw.githubusercontent.com/tqdm/tqdm/master/images/tqdm-jupyter-1.gif .. |Screenshot-Jupyter2| image:: https://raw.githubusercontent.com/tqdm/tqdm/master/images/tqdm-jupyter-2.gif .. |Screenshot-Jupyter3| image:: https://raw.githubusercontent.com/tqdm/tqdm/master/images/tqdm-jupyter-3.gif .. |README-Hits| image:: http://hitt.herokuapp.com/tqdm/tqdm.svg