mirror of https://github.com/tqdm/tqdm.git
initial benchmark framework to visualise regression
This commit is contained in:
parent
6b73b5bd29
commit
d85e447ce1
|
@ -39,3 +39,7 @@ nosetests.xml
|
|||
|
||||
# PyCharm
|
||||
.idea
|
||||
|
||||
# asv
|
||||
.asv/
|
||||
benchmarks/*.pyc
|
||||
|
|
26
CONTRIBUTE
26
CONTRIBUTE
|
@ -249,6 +249,32 @@ cannot re-upload another with the same version number
|
|||
updating just the metadata is possible: `[python setup.py] make pypimeta`
|
||||
|
||||
|
||||
UPDATING GH-PAGES
|
||||
-----------------
|
||||
|
||||
The most important file is README.rst, which sould always be kept up-to-date
|
||||
and in sync with the in-line source documentation. This will affect all of the
|
||||
following:
|
||||
|
||||
- The [main repository site](https://github.com/tqdm/tqdm) which automatically
|
||||
serves the latest README.rst as well as links to all of github's features.
|
||||
This is the preferred online referral link for tqdm.
|
||||
- The [PyPi mirror](https://pypi.python.org/pypi/tqdm) which automatically
|
||||
serves the latest release built from README.rst as well as links to past
|
||||
releases.
|
||||
- Many external web crawlers.
|
||||
|
||||
|
||||
Additionally (less maintained), there exists:
|
||||
|
||||
- A [wiki](https://github.com/tqdm/tqdm/wiki) which is publicly editable.
|
||||
- The [gh-pages project](https://tqdm.github.io/tqdm/) which is built from the
|
||||
[gh-pages branch](https://github.com/tqdm/tqdm/tree/gh-pages), which is
|
||||
built using [asv](https://github.com/spacetelescope/asv/).
|
||||
- The [gh-pages root](https://tqdm.github.io/) which is built from a separate
|
||||
outdated [github.io repo](https://github.com/tqdm/tqdm.github.io).
|
||||
|
||||
|
||||
QUICK DEV SUMMARY
|
||||
-----------------
|
||||
|
||||
|
|
|
@ -0,0 +1,28 @@
|
|||
{
|
||||
"version": 1,
|
||||
"project": "tqdm",
|
||||
"project_url": "https://github.com/tqdm/tqdm/",
|
||||
"repo": ".",
|
||||
"environment_type": "virtualenv",
|
||||
"show_commit_url": "http://github.com/tqdm/tqdm/commit/",
|
||||
// "pythons": ["2.7", "3.3"],
|
||||
// "matrix": {
|
||||
// "numpy": ["1.6", "1.7"],
|
||||
// "six": ["", null], // test with and without six installed
|
||||
// "pip+emcee": [""], // emcee is only available for install with pip.
|
||||
// },
|
||||
// "exclude": [
|
||||
// {"python": "3.2", "sys_platform": "win32"}, // skip py3.2 on windows
|
||||
// {"environment_type": "conda", "six": null}, // don't run without six on conda
|
||||
// ],
|
||||
// "include": [
|
||||
// // additional env for python2.7
|
||||
// {"python": "2.7", "numpy": "1.8"},
|
||||
// // additional env if run on windows+conda
|
||||
// {"platform": "win32", "environment_type": "conda", "python": "2.7", "libpython": ""},
|
||||
// ],
|
||||
"benchmark_dir": "benchmarks",
|
||||
"env_dir": ".asv/env",
|
||||
"results_dir": ".asv/results",
|
||||
"html_dir": ".asv/html",
|
||||
}
|
|
@ -0,0 +1,25 @@
|
|||
# Write the benchmarking functions here.
|
||||
# See "Writing benchmarks" in the asv docs for more information.
|
||||
|
||||
|
||||
class TimeSuite:
|
||||
"""
|
||||
An example benchmark that times the performance of various kinds
|
||||
of iterating over dictionaries in Python.
|
||||
"""
|
||||
def setup(self):
|
||||
from tqdm import tqdm
|
||||
self.tqdm = tqdm
|
||||
try:
|
||||
self.iterable = xrange(int(6e6))
|
||||
except:
|
||||
self.iterable = range(int(6e6))
|
||||
|
||||
def time_tqdm(self):
|
||||
[0 for _ in self.tqdm(self.iterable)]
|
||||
|
||||
|
||||
class MemSuite:
|
||||
# def mem_list(self):
|
||||
# return [0] * 256
|
||||
pass
|
Loading…
Reference in New Issue