starlette/docs/routing.md

334 lines
8.7 KiB
Markdown

## HTTP Routing
Starlette has a simple but capable request routing system. A routing table
is defined as a list of routes, and passed when instantiating the application.
```python
from starlette.applications import Starlette
from starlette.responses import PlainTextResponse
from starlette.routing import Route
async def homepage(request):
return PlainTextResponse("Homepage")
async def about(request):
return PlainTextResponse("About")
routes = [
Route("/", endpoint=homepage),
Route("/about", endpoint=about),
]
app = Starlette(routes=routes)
```
The `endpoint` argument can be one of:
* A regular function or async function, which accepts a single `request`
argument and which should return a response.
* A class that implements the ASGI interface, such as Starlette's [HTTPEndpoint](endpoints.md#httpendpoint).
## Path Parameters
Paths can use URI templating style to capture path components.
```python
Route('/users/{username}', user)
```
By default this will capture characters up to the end of the path or the next `/`.
You can use convertors to modify what is captured. The available convertors are:
* `str` returns a string, and is the default.
* `int` returns a Python integer.
* `float` returns a Python float.
* `uuid` return a Python `uuid.UUID` instance.
* `path` returns the rest of the path, including any additional `/` characters.
Convertors are used by prefixing them with a colon, like so:
```python
Route('/users/{user_id:int}', user)
Route('/floating-point/{number:float}', floating_point)
Route('/uploaded/{rest_of_path:path}', uploaded)
```
If you need a different converter that is not defined, you can create your own.
See below an example on how to create a `datetime` convertor, and how to register it:
```python
from datetime import datetime
from starlette.convertors import Convertor, register_url_convertor
class DateTimeConvertor(Convertor):
regex = "[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}(.[0-9]+)?"
def convert(self, value: str) -> datetime:
return datetime.strptime(value, "%Y-%m-%dT%H:%M:%S")
def to_string(self, value: datetime) -> str:
return value.strftime("%Y-%m-%dT%H:%M:%S")
register_url_convertor("datetime", DateTimeConvertor())
```
After registering it, you'll be able to use it as:
```python
Route('/history/{date:datetime}', history)
```
Path parameters are made available in the request, as the `request.path_params`
dictionary.
```python
async def user(request):
user_id = request.path_params['user_id']
...
```
## Handling HTTP methods
Routes can also specify which HTTP methods are handled by an endpoint:
```python
Route('/users/{user_id:int}', user, methods=["GET", "POST"])
```
By default function endpoints will only accept `GET` requests, unless specified.
## Submounting routes
In large applications you might find that you want to break out parts of the
routing table, based on a common path prefix.
```python
routes = [
Route('/', homepage),
Mount('/users', routes=[
Route('/', users, methods=['GET', 'POST']),
Route('/{username}', user),
])
]
```
This style allows you to define different subsets of the routing table in
different parts of your project.
```python
from myproject import users, auth
routes = [
Route('/', homepage),
Mount('/users', routes=users.routes),
Mount('/auth', routes=auth.routes),
]
```
You can also use mounting to include sub-applications within your Starlette
application. For example...
```python
# This is a standalone static files server:
app = StaticFiles(directory="static")
# This is a static files server mounted within a Starlette application,
# underneath the "/static" path.
routes = [
...
Mount("/static", app=StaticFiles(directory="static"), name="static")
]
app = Starlette(routes=routes)
```
## Reverse URL lookups
You'll often want to be able to generate the URL for a particular route,
such as in cases where you need to return a redirect response.
* Signature: `url_for(name, **path_params) -> URL`
```python
routes = [
Route("/", homepage, name="homepage")
]
# We can use the following to return a URL...
url = request.url_for("homepage")
```
URL lookups can include path parameters...
```python
routes = [
Route("/users/{username}", user, name="user_detail")
]
# We can use the following to return a URL...
url = request.url_for("user_detail", username=...)
```
If a `Mount` includes a `name`, then submounts should use a `{prefix}:{name}`
style for reverse URL lookups.
```python
routes = [
Mount("/users", name="users", routes=[
Route("/", user, name="user_list"),
Route("/{username}", user, name="user_detail")
])
]
# We can use the following to return URLs...
url = request.url_for("users:user_list")
url = request.url_for("users:user_detail", username=...)
```
Mounted applications may include a `path=...` parameter.
```python
routes = [
...
Mount("/static", app=StaticFiles(directory="static"), name="static")
]
# We can use the following to return URLs...
url = request.url_for("static", path="/css/base.css")
```
For cases where there is no `request` instance, you can make reverse lookups
against the application, although these will only return the URL path.
```python
url = app.url_path_for("user_detail", username=...)
```
## Host-based routing
If you want to use different routes for the same path based on the `Host` header.
Note that port is removed from the `Host` header when matching.
For example, `Host (host='example.org:3600', ...)` will be processed
even if the `Host` header contains or does not contain a port other than `3600`
(`example.org:5600`, `example.org`).
Therefore, you can specify the port if you need it for use in `url_for`.
There are several ways to connect host-based routes to your application
```python
site = Router() # Use eg. `@site.route()` to configure this.
api = Router() # Use eg. `@api.route()` to configure this.
news = Router() # Use eg. `@news.route()` to configure this.
routes = [
Host('api.example.org', api, name="site_api")
]
app = Starlette(routes=routes)
app.host('www.example.org', site, name="main_site")
news_host = Host('news.example.org', news)
app.router.routes.append(news_host)
```
URL lookups can include host parameters just like path parameters
```python
routes = [
Host("{subdomain}.example.org", name="sub", app=Router(routes=[
Mount("/users", name="users", routes=[
Route("/", user, name="user_list"),
Route("/{username}", user, name="user_detail")
])
]))
]
...
url = request.url_for("sub:users:user_detail", username=..., subdomain=...)
url = request.url_for("sub:users:user_list", subdomain=...)
```
## Route priority
Incoming paths are matched against each `Route` in order.
In cases where more that one route could match an incoming path, you should
take care to ensure that more specific routes are listed before general cases.
For example:
```python
# Don't do this: `/users/me` will never match incoming requests.
routes = [
Route('/users/{username}', user),
Route('/users/me', current_user),
]
# Do this: `/users/me` is tested first.
routes = [
Route('/users/me', current_user),
Route('/users/{username}', user),
]
```
## Working with Router instances
If you're working at a low-level you might want to use a plain `Router`
instance, rather that creating a `Starlette` application. This gives you
a lightweight ASGI application that just provides the application routing,
without wrapping it up in any middleware.
```python
app = Router(routes=[
Route('/', homepage),
Mount('/users', routes=[
Route('/', users, methods=['GET', 'POST']),
Route('/{username}', user),
])
])
```
## WebSocket Routing
When working with WebSocket endpoints, you should use `WebSocketRoute`
instead of the usual `Route`.
Path parameters, and reverse URL lookups for `WebSocketRoute` work the the same
as HTTP `Route`, which can be found in the HTTP [Route](#http-routing) section above.
```python
from starlette.applications import Starlette
from starlette.routing import WebSocketRoute
async def websocket_index(websocket):
await websocket.accept()
await websocket.send_text("Hello, websocket!")
await websocket.close()
async def websocket_user(websocket):
name = websocket.path_params["name"]
await websocket.accept()
await websocket.send_text(f"Hello, {name}")
await websocket.close()
routes = [
WebSocketRoute("/", endpoint=websocket_index),
WebSocketRoute("/{name}", endpoint=websocket_user),
]
app = Starlette(routes=routes)
```
The `endpoint` argument can be one of:
* An async function, which accepts a single `websocket` argument.
* A class that implements the ASGI interface, such as Starlette's [WebSocketEndpoint](endpoints.md#websocketendpoint).