spaCy/spacy/cli/init_pipeline.py

67 lines
3.0 KiB
Python

from typing import Optional
import logging
from pathlib import Path
from wasabi import msg
import typer
from .. import util
from ..training.initialize import init_nlp, convert_vectors
from ._util import init_cli, Arg, Opt, parse_config_overrides, show_validation_error
from ._util import import_code, setup_gpu
@init_cli.command("vectors")
def init_vectors_cli(
# fmt: off
lang: str = Arg(..., help="The language of the nlp object to create"),
vectors_loc: Path = Arg(..., help="Vectors file in Word2Vec format", exists=True),
output_dir: Path = Arg(..., help="Pipeline output directory"),
prune: int = Opt(-1, "--prune", "-p", help="Optional number of vectors to prune to"),
truncate: int = Opt(0, "--truncate", "-t", help="Optional number of vectors to truncate to when reading in vectors file"),
name: Optional[str] = Opt(None, "--name", "-n", help="Optional name for the word vectors, e.g. en_core_web_lg.vectors"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
# fmt: on
):
"""Convert word vectors for use with spaCy. Will export an nlp object that
you can use in the [initialize.vocab] block of your config to initialize
a model with vectors.
"""
util.logger.setLevel(logging.DEBUG if verbose else logging.ERROR)
msg.info(f"Creating blank nlp object for language '{lang}'")
nlp = util.get_lang_class(lang)()
convert_vectors(nlp, vectors_loc, truncate=truncate, prune=prune, name=name)
msg.good(f"Successfully converted {len(nlp.vocab.vectors)} vectors")
nlp.to_disk(output_dir)
msg.good(
"Saved nlp object with vectors to output directory. You can now use the "
"path to it in your config as the 'vectors' setting in [initialize.vocab].",
output_dir,
)
@init_cli.command(
"nlp",
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
hidden=True,
)
def init_pipeline_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True),
output_path: Path = Arg(..., help="Output directory for the prepared data"),
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
# fmt: on
):
util.logger.setLevel(logging.DEBUG if verbose else logging.ERROR)
overrides = parse_config_overrides(ctx.args)
import_code(code_path)
setup_gpu(use_gpu)
with show_validation_error(config_path):
config = util.load_config(config_path, overrides=overrides)
with show_validation_error(hint_fill=False):
nlp = init_nlp(config, use_gpu=use_gpu, silent=False)
nlp.to_disk(output_path)
msg.good(f"Saved initialized pipeline to {output_path}")