from typing import Optional import logging from pathlib import Path from wasabi import msg import typer from .. import util from ..training.initialize import init_nlp, convert_vectors from ._util import init_cli, Arg, Opt, parse_config_overrides, show_validation_error from ._util import import_code, setup_gpu @init_cli.command("vectors") def init_vectors_cli( # fmt: off lang: str = Arg(..., help="The language of the nlp object to create"), vectors_loc: Path = Arg(..., help="Vectors file in Word2Vec format", exists=True), output_dir: Path = Arg(..., help="Pipeline output directory"), prune: int = Opt(-1, "--prune", "-p", help="Optional number of vectors to prune to"), truncate: int = Opt(0, "--truncate", "-t", help="Optional number of vectors to truncate to when reading in vectors file"), name: Optional[str] = Opt(None, "--name", "-n", help="Optional name for the word vectors, e.g. en_core_web_lg.vectors"), verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"), # fmt: on ): """Convert word vectors for use with spaCy. Will export an nlp object that you can use in the [initialize.vocab] block of your config to initialize a model with vectors. """ util.logger.setLevel(logging.DEBUG if verbose else logging.ERROR) msg.info(f"Creating blank nlp object for language '{lang}'") nlp = util.get_lang_class(lang)() convert_vectors(nlp, vectors_loc, truncate=truncate, prune=prune, name=name) msg.good(f"Successfully converted {len(nlp.vocab.vectors)} vectors") nlp.to_disk(output_dir) msg.good( "Saved nlp object with vectors to output directory. You can now use the " "path to it in your config as the 'vectors' setting in [initialize.vocab].", output_dir, ) @init_cli.command( "nlp", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}, hidden=True, ) def init_pipeline_cli( # fmt: off ctx: typer.Context, # This is only used to read additional arguments config_path: Path = Arg(..., help="Path to config file", exists=True), output_path: Path = Arg(..., help="Output directory for the prepared data"), code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"), verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"), use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU") # fmt: on ): util.logger.setLevel(logging.DEBUG if verbose else logging.ERROR) overrides = parse_config_overrides(ctx.args) import_code(code_path) setup_gpu(use_gpu) with show_validation_error(config_path): config = util.load_config(config_path, overrides=overrides) with show_validation_error(hint_fill=False): nlp = init_nlp(config, use_gpu=use_gpu, silent=False) nlp.to_disk(output_path) msg.good(f"Saved initialized pipeline to {output_path}")