spaCy/website/docs/api/lemmatizer.md

99 lines
4.6 KiB
Markdown

---
title: Lemmatizer
teaser: Assign the base forms of words
tag: class
source: spacy/lemmatizer.py
---
The `Lemmatizer` supports simple part-of-speech-sensitive suffix rules and
lookup tables.
## Lemmatizer.\_\_init\_\_ {#init tag="method"}
Create a `Lemmatizer`.
> #### Example
>
> ```python
> from spacy.lemmatizer import Lemmatizer
> lemmatizer = Lemmatizer()
> ```
| Name | Type | Description |
| ------------ | ------------- | ---------------------------------------------------------- |
| `index` | dict / `None` | Inventory of lemmas in the language. |
| `exceptions` | dict / `None` | Mapping of string forms to lemmas that bypass the `rules`. |
| `rules` | dict / `None` | List of suffix rewrite rules. |
| `lookup` | dict / `None` | Lookup table mapping string to their lemmas. |
| **RETURNS** | `Lemmatizer` | The newly created object. |
## Lemmatizer.\_\_call\_\_ {#call tag="method"}
Lemmatize a string.
> #### Example
>
> ```python
> from spacy.lemmatizer import Lemmatizer
> rules = {"noun": [["s", ""]]}
> lemmatizer = Lemmatizer(index={}, exceptions={}, rules=rules)
> lemmas = lemmatizer("ducks", "NOUN")
> assert lemmas == ["duck"]
> ```
| Name | Type | Description |
| ------------ | ------------- | -------------------------------------------------------------------------------------------------------- |
| `string` | unicode | The string to lemmatize, e.g. the token text. |
| `univ_pos` | unicode / int | The token's universal part-of-speech tag. |
| `morphology` | dict / `None` | Morphological features following the [Universal Dependencies](http://universaldependencies.org/) scheme. |
| **RETURNS** | list | The available lemmas for the string. |
## Lemmatizer.lookup {#lookup tag="method" new="2"}
Look up a lemma in the lookup table, if available. If no lemma is found, the
original string is returned. Languages can provide a
[lookup table](/usage/adding-languages#lemmatizer) via the `lemma_lookup`
variable, set on the individual `Language` class.
> #### Example
>
> ```python
> lookup = {"going": "go"}
> lemmatizer = Lemmatizer(lookup=lookup)
> assert lemmatizer.lookup("going") == "go"
> ```
| Name | Type | Description |
| ----------- | ------- | ----------------------------------------------------------------- |
| `string` | unicode | The string to look up. |
| **RETURNS** | unicode | The lemma if the string was found, otherwise the original string. |
## Lemmatizer.is_base_form {#is_base_form tag="method"}
Check whether we're dealing with an uninflected paradigm, so we can avoid
lemmatization entirely.
> #### Example
>
> ```python
> pos = "verb"
> morph = {"VerbForm": "inf"}
> is_base_form = lemmatizer.is_base_form(pos, morph)
> assert is_base_form == True
> ```
| Name | Type | Description |
| ------------ | ------------- | --------------------------------------------------------------------------------------- |
| `univ_pos` | unicode / int | The token's universal part-of-speech tag. |
| `morphology` | dict | The token's morphological features. |
| **RETURNS** | bool | Whether the token's part-of-speech tag and morphological features describe a base form. |
## Attributes {#attributes}
| Name | Type | Description |
| ----------------------------------------- | ------------- | ---------------------------------------------------------- |
| `index` | dict / `None` | Inventory of lemmas in the language. |
| `exc` | dict / `None` | Mapping of string forms to lemmas that bypass the `rules`. |
| `rules` | dict / `None` | List of suffix rewrite rules. |
| `lookup_table` <Tag variant="new">2</Tag> | dict / `None` | The lemma lookup table, if available. |