spaCy/website/docs/api/doc.md

36 KiB
Raw Blame History

title tag teaser source
Doc class A container for accessing linguistic annotations. spacy/tokens/doc.pyx

A Doc is a sequence of Token objects. Access sentences and named entities, export annotations to numpy arrays, losslessly serialize to compressed binary strings. The Doc object holds an array of TokenC structs. The Python-level Token and Span objects are views of this array, i.e. they don't own the data themselves.

Doc.__init__

Construct a Doc object. The most common way to get a Doc object is via the nlp object.

Example

# Construction 1
doc = nlp("Some text")

# Construction 2
from spacy.tokens import Doc
words = ["hello", "world", "!"]
spaces = [True, False, False]
doc = Doc(nlp.vocab, words=words, spaces=spaces)
Name Type Description
vocab Vocab A storage container for lexical types.
words iterable A list of strings to add to the container.
spaces iterable A list of boolean values indicating whether each word has a subsequent space. Must have the same length as words, if specified. Defaults to a sequence of True.
RETURNS Doc The newly constructed object.

Doc.__getitem__

Get a Token object at position i, where i is an integer. Negative indexing is supported, and follows the usual Python semantics, i.e. doc[-2] is doc[len(doc) - 2].

Example

doc = nlp("Give it back! He pleaded.")
assert doc[0].text == "Give"
assert doc[-1].text == "."
span = doc[1:3]
assert span.text == "it back"
Name Type Description
i int The index of the token.
RETURNS Token The token at doc[i].

Get a Span object, starting at position start (token index) and ending at position end (token index). For instance, doc[2:5] produces a span consisting of tokens 2, 3 and 4. Stepped slices (e.g. doc[start : end : step]) are not supported, as Span objects must be contiguous (cannot have gaps). You can use negative indices and open-ended ranges, which have their normal Python semantics.

Name Type Description
start_end tuple The slice of the document to get.
RETURNS Span The span at doc[start:end].

Doc.__iter__

Iterate over Token objects, from which the annotations can be easily accessed.

Example

doc = nlp("Give it back")
assert [t.text for t in doc] == ["Give", "it", "back"]

This is the main way of accessing Token objects, which are the main way annotations are accessed from Python. If faster-than-Python speeds are required, you can instead access the annotations as a numpy array, or access the underlying C data directly from Cython.

Name Type Description
YIELDS Token A Token object.

Doc.__len__

Get the number of tokens in the document.

Example

doc = nlp("Give it back! He pleaded.")
assert len(doc) == 7
Name Type Description
RETURNS int The number of tokens in the document.

Doc.set_extension

Define a custom attribute on the Doc which becomes available via Doc._. For details, see the documentation on custom attributes.

Example

from spacy.tokens import Doc
city_getter = lambda doc: any(city in doc.text for city in ("New York", "Paris", "Berlin"))
Doc.set_extension("has_city", getter=city_getter)
doc = nlp("I like New York")
assert doc._.has_city
Name Type Description
name unicode Name of the attribute to set by the extension. For example, 'my_attr' will be available as doc._.my_attr.
default - Optional default value of the attribute if no getter or method is defined.
method callable Set a custom method on the object, for example doc._.compare(other_doc).
getter callable Getter function that takes the object and returns an attribute value. Is called when the user accesses the ._ attribute.
setter callable Setter function that takes the Doc and a value, and modifies the object. Is called when the user writes to the Doc._ attribute.
force bool Force overwriting existing attribute.

Doc.get_extension

Look up a previously registered extension by name. Returns a 4-tuple (default, method, getter, setter) if the extension is registered. Raises a KeyError otherwise.

Example

from spacy.tokens import Doc
Doc.set_extension('has_city', default=False)
extension = Doc.get_extension('has_city')
assert extension == (False, None, None, None)
Name Type Description
name unicode Name of the extension.
RETURNS tuple A (default, method, getter, setter) tuple of the extension.

Doc.has_extension

Check whether an extension has been registered on the Doc class.

Example

from spacy.tokens import Doc
Doc.set_extension('has_city', default=False)
assert Doc.has_extension('has_city')
Name Type Description
name unicode Name of the extension to check.
RETURNS bool Whether the extension has been registered.

Doc.remove_extension

Remove a previously registered extension.

Example

from spacy.tokens import Doc
Doc.set_extension('has_city', default=False)
removed = Doc.remove_extension('has_city')
assert not Doc.has_extension('has_city')
Name Type Description
name unicode Name of the extension.
RETURNS tuple A (default, method, getter, setter) tuple of the removed extension.

Doc.char_span

Create a Span object from the slice doc.text[start:end]. Returns None if the character indices don't map to a valid span.

Example

doc = nlp("I like New York")
span = doc.char_span(7, 15, label="GPE")
assert span.text == "New York"
Name Type Description
start int The index of the first character of the span.
end int The index of the last character after the span.
label uint64 / unicode A label to attach to the span, e.g. for named entities.
kb_id 2.2 uint64 / unicode An ID from a knowledge base to capture the meaning of a named entity.
vector numpy.ndarray[ndim=1, dtype='float32'] A meaning representation of the span.
RETURNS Span The newly constructed object or None.

Doc.similarity

Make a semantic similarity estimate. The default estimate is cosine similarity using an average of word vectors.

Example

apples = nlp("I like apples")
oranges = nlp("I like oranges")
apples_oranges = apples.similarity(oranges)
oranges_apples = oranges.similarity(apples)
assert apples_oranges == oranges_apples
Name Type Description
other - The object to compare with. By default, accepts Doc, Span, Token and Lexeme objects.
RETURNS float A scalar similarity score. Higher is more similar.

Doc.count_by

Count the frequencies of a given attribute. Produces a dict of {attr (int): count (ints)} frequencies, keyed by the values of the given attribute ID.

Example

from spacy.attrs import ORTH
doc = nlp("apple apple orange banana")
assert doc.count_by(ORTH) == {7024L: 1, 119552L: 1, 2087L: 2}
doc.to_array([ORTH])
# array([[11880], [11880], [7561], [12800]])
Name Type Description
attr_id int The attribute ID
RETURNS dict A dictionary mapping attributes to integer counts.

Doc.get_lca_matrix

Calculates the lowest common ancestor matrix for a given Doc. Returns LCA matrix containing the integer index of the ancestor, or -1 if no common ancestor is found, e.g. if span excludes a necessary ancestor.

Example

doc = nlp("This is a test")
matrix = doc.get_lca_matrix()
# array([[0, 1, 1, 1], [1, 1, 1, 1], [1, 1, 2, 3], [1, 1, 3, 3]], dtype=int32)
Name Type Description
RETURNS numpy.ndarray[ndim=2, dtype='int32'] The lowest common ancestor matrix of the Doc.

Doc.to_json

Convert a Doc to JSON. The format it produces will be the new format for the spacy train command (not implemented yet). If custom underscore attributes are specified, their values need to be JSON-serializable. They'll be added to an "_" key in the data, e.g. "_": {"foo": "bar"}.

Example

doc = nlp("Hello")
json_doc = doc.to_json()

Result

{
  "text": "Hello",
  "ents": [],
  "sents": [{"start": 0, "end": 5}],
  "tokens": [{"id": 0, "start": 0, "end": 5, "pos": "INTJ", "tag": "UH", "dep": "ROOT", "head": 0}
  ]
}
Name Type Description
underscore list Optional list of string names of custom JSON-serializable doc._. attributes.
RETURNS dict The JSON-formatted data.

spaCy previously implemented a Doc.print_tree method that returned a similar JSON-formatted representation of a Doc. As of v2.1, this method is deprecated in favor of Doc.to_json. If you need more complex nested representations, you might want to write your own function to extract the data.

Doc.to_array

Export given token attributes to a numpy ndarray. If attr_ids is a sequence of M attributes, the output array will be of shape (N, M), where N is the length of the Doc (in tokens). If attr_ids is a single attribute, the output shape will be (N,). You can specify attributes by integer ID (e.g. spacy.attrs.LEMMA) or string name (e.g. 'LEMMA' or 'lemma'). The values will be 64-bit integers.

Returns a 2D array with one row per token and one column per attribute (when attr_ids is a list), or as a 1D numpy array, with one item per attribute (when attr_ids is a single value).

Example

from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
doc = nlp(text)
# All strings mapped to integers, for easy export to numpy
np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
np_array = doc.to_array("POS")
Name Type Description
attr_ids list or int or string A list of attributes (int IDs or string names) or a single attribute (int ID or string name)
RETURNS numpy.ndarray[ndim=2, dtype='uint64'] or numpy.ndarray[ndim=1, dtype='uint64'] The exported attributes as a numpy array.

Doc.from_array

Load attributes from a numpy array. Write to a Doc object, from an (M, N) array of attributes.

Example

from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
from spacy.tokens import Doc
doc = nlp("Hello world!")
np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
doc2 = Doc(doc.vocab, words=[t.text for t in doc])
doc2.from_array([LOWER, POS, ENT_TYPE, IS_ALPHA], np_array)
assert doc[0].pos_ == doc2[0].pos_
Name Type Description
attrs list A list of attribute ID ints.
array numpy.ndarray[ndim=2, dtype='int32'] The attribute values to load.
exclude list String names of serialization fields to exclude.
RETURNS Doc Itself.

Doc.to_disk

Save the current state to a directory.

Example

doc.to_disk("/path/to/doc")
Name Type Description
path unicode / Path A path to a directory, which will be created if it doesn't exist. Paths may be either strings or Path-like objects.
exclude list String names of serialization fields to exclude.

Doc.from_disk

Loads state from a directory. Modifies the object in place and returns it.

Example

from spacy.tokens import Doc
from spacy.vocab import Vocab
doc = Doc(Vocab()).from_disk("/path/to/doc")
Name Type Description
path unicode / Path A path to a directory. Paths may be either strings or Path-like objects.
exclude list String names of serialization fields to exclude.
RETURNS Doc The modified Doc object.

Doc.to_bytes

Serialize, i.e. export the document contents to a binary string.

Example

doc = nlp("Give it back! He pleaded.")
doc_bytes = doc.to_bytes()
Name Type Description
exclude list String names of serialization fields to exclude.
RETURNS bytes A losslessly serialized copy of the Doc, including all annotations.

Doc.from_bytes

Deserialize, i.e. import the document contents from a binary string.

Example

from spacy.tokens import Doc
doc = nlp("Give it back! He pleaded.")
doc_bytes = doc.to_bytes()
doc2 = Doc(doc.vocab).from_bytes(doc_bytes)
assert doc.text == doc2.text
Name Type Description
data bytes The string to load from.
exclude list String names of serialization fields to exclude.
RETURNS Doc The Doc object.

Doc.retokenize

Context manager to handle retokenization of the Doc. Modifications to the Doc's tokenization are stored, and then made all at once when the context manager exits. This is much more efficient, and less error-prone. All views of the Doc (Span and Token) created before the retokenization are invalidated, although they may accidentally continue to work.

Example

doc = nlp("Hello world!")
with doc.retokenize() as retokenizer:
    retokenizer.merge(doc[0:2])
Name Type Description
RETURNS Retokenizer The retokenizer.

Retokenizer.merge

Mark a span for merging. The attrs will be applied to the resulting token (if they're context-dependent token attributes like LEMMA or DEP) or to the underlying lexeme (if they're context-independent lexical attributes like LOWER or IS_STOP). Writable custom extension attributes can be provided as a dictionary mapping attribute names to values as the "_" key.

Example

doc = nlp("I like David Bowie")
with doc.retokenize() as retokenizer:
    attrs = {"LEMMA": "David Bowie"}
    retokenizer.merge(doc[2:4], attrs=attrs)
Name Type Description
span Span The span to merge.
attrs dict Attributes to set on the merged token.

Retokenizer.split

Mark a token for splitting, into the specified orths. The heads are required to specify how the new subtokens should be integrated into the dependency tree. The list of per-token heads can either be a token in the original document, e.g. doc[2], or a tuple consisting of the token in the original document and its subtoken index. For example, (doc[3], 1) will attach the subtoken to the second subtoken of doc[3].

This mechanism allows attaching subtokens to other newly created subtokens, without having to keep track of the changing token indices. If the specified head token will be split within the retokenizer block and no subtoken index is specified, it will default to 0. Attributes to set on subtokens can be provided as a list of values. They'll be applied to the resulting token (if they're context-dependent token attributes like LEMMA or DEP) or to the underlying lexeme (if they're context-independent lexical attributes like LOWER or IS_STOP).

Example

doc = nlp("I live in NewYork")
with doc.retokenize() as retokenizer:
    heads = [(doc[3], 1), doc[2]]
    attrs = {"POS": ["PROPN", "PROPN"],
             "DEP": ["pobj", "compound"]}
    retokenizer.split(doc[3], ["New", "York"], heads=heads, attrs=attrs)
Name Type Description
token Token The token to split.
orths list The verbatim text of the split tokens. Needs to match the text of the original token.
heads list List of token or (token, subtoken) tuples specifying the tokens to attach the newly split subtokens to.
attrs dict Attributes to set on all split tokens. Attribute names mapped to list of per-token attribute values.

Doc.merge

As of v2.1.0, Doc.merge still works but is considered deprecated. You should use the new and less error-prone Doc.retokenize instead.

Retokenize the document, such that the span at doc.text[start_idx : end_idx] is merged into a single token. If start_idx and end_idx do not mark start and end token boundaries, the document remains unchanged.

Example

doc = nlp("Los Angeles start.")
doc.merge(0, len("Los Angeles"), "NNP", "Los Angeles", "GPE")
assert [t.text for t in doc] == ["Los Angeles", "start", "."]
Name Type Description
start_idx int The character index of the start of the slice to merge.
end_idx int The character index after the end of the slice to merge.
**attributes - Attributes to assign to the merged token. By default, attributes are inherited from the syntactic root token of the span.
RETURNS Token The newly merged token, or None if the start and end indices did not fall at token boundaries

Doc.ents

The named entities in the document. Returns a tuple of named entity Span objects, if the entity recognizer has been applied.

Example

doc = nlp("Mr. Best flew to New York on Saturday morning.")
ents = list(doc.ents)
assert ents[0].label == 346
assert ents[0].label_ == "PERSON"
assert ents[0].text == "Mr. Best"
Name Type Description
RETURNS tuple Entities in the document, one Span per entity.

Doc.noun_chunks

Iterate over the base noun phrases in the document. Yields base noun-phrase Span objects, if the document has been syntactically parsed. A base noun phrase, or "NP chunk", is a noun phrase that does not permit other NPs to be nested within it so no NP-level coordination, no prepositional phrases, and no relative clauses.

Example

doc = nlp("A phrase with another phrase occurs.")
chunks = list(doc.noun_chunks)
assert chunks[0].text == "A phrase"
assert chunks[1].text == "another phrase"
Name Type Description
YIELDS Span Noun chunks in the document.

Doc.sents

Iterate over the sentences in the document. Sentence spans have no label. To improve accuracy on informal texts, spaCy calculates sentence boundaries from the syntactic dependency parse. If the parser is disabled, the sents iterator will be unavailable.

Example

doc = nlp("This is a sentence. Here's another...")
sents = list(doc.sents)
assert len(sents) == 2
assert [s.root.text for s in sents] == ["is", "'s"]
Name Type Description
YIELDS Span Sentences in the document.

Doc.has_vector

A boolean value indicating whether a word vector is associated with the object.

Example

doc = nlp("I like apples")
assert doc.has_vector
Name Type Description
RETURNS bool Whether the document has a vector data attached.

Doc.vector

A real-valued meaning representation. Defaults to an average of the token vectors.

Example

doc = nlp("I like apples")
assert doc.vector.dtype == "float32"
assert doc.vector.shape == (300,)
Name Type Description
RETURNS numpy.ndarray[ndim=1, dtype='float32'] A 1D numpy array representing the document's semantics.

Doc.vector_norm

The L2 norm of the document's vector representation.

Example

doc1 = nlp("I like apples")
doc2 = nlp("I like oranges")
doc1.vector_norm  # 4.54232424414368
doc2.vector_norm  # 3.304373298575751
assert doc1.vector_norm != doc2.vector_norm
Name Type Description
RETURNS float The L2 norm of the vector representation.

Attributes

Name Type Description
text unicode A unicode representation of the document text.
text_with_ws unicode An alias of Doc.text, provided for duck-type compatibility with Span and Token.
mem Pool The document's local memory heap, for all C data it owns.
vocab Vocab The store of lexical types.
tensor 2 ndarray Container for dense vector representations.
cats 2 dictionary Maps either a label to a score for categories applied to whole document, or (start_char, end_char, label) to score for categories applied to spans. start_char and end_char should be character offsets, label can be either a string or an integer ID, and score should be a float.
user_data - A generic storage area, for user custom data.
lang 2.1 int Language of the document's vocabulary.
lang_ 2.1 unicode Language of the document's vocabulary.
is_tagged bool A flag indicating that the document has been part-of-speech tagged.
is_parsed bool A flag indicating that the document has been syntactically parsed.
is_sentenced bool A flag indicating that sentence boundaries have been applied to the document.
is_nered 2.1 bool A flag indicating that named entities have been set. Will return True if any of the tokens has an entity tag set, even if the others are unknown.
sentiment float The document's positivity/negativity score, if available.
user_hooks dict A dictionary that allows customization of the Doc's properties.
user_token_hooks dict A dictionary that allows customization of properties of Token children.
user_span_hooks dict A dictionary that allows customization of properties of Span children.
_ Underscore User space for adding custom attribute extensions.

Serialization fields

During serialization, spaCy will export several data fields used to restore different aspects of the object. If needed, you can exclude them from serialization by passing in the string names via the exclude argument.

Example

data = doc.to_bytes(exclude=["text", "tensor"])
doc.from_disk("./doc.bin", exclude=["user_data"])
Name Description
text The value of the Doc.text attribute.
sentiment The value of the Doc.sentiment attribute.
tensor The value of the Doc.tensor attribute.
user_data The value of the Doc.user_data dictionary.
user_data_keys The keys of the Doc.user_data dictionary.
user_data_values The values of the Doc.user_data dictionary.