17 KiB
title | tag | source | new | teaser | api_base_class | api_string_name | api_trainable |
---|---|---|---|---|---|---|---|
EntityLinker | class | spacy/pipeline/entity_linker.py | 2.2 | Pipeline component for named entity linking and disambiguation | /api/pipe | entity_linker | true |
An Entity Linker component disambiguates textual mentions (tagged as named entities) to unique identifiers, grounding the named entities into the "real world". It requires a Knowledge base, a function to generate plausible candidates from that Knowledge base given a certain textual mention, and a ML model to pick the right candidate, given the local context of the mention.
Config and implementation
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
config
argument on nlp.add_pipe
or in your
config.cfg
for training. See the
model architectures documentation for details on the
architectures and their arguments and hyperparameters.
Example
from spacy.pipeline.entity_linker import DEFAULT_NEL_MODEL config = { "labels_discard": [], "incl_prior": True, "incl_context": True, "model": DEFAULT_NEL_MODEL, "kb_loader": {'@assets': 'spacy.EmptyKB.v1', 'entity_vector_length': 64}, "get_candidates": {'@assets': 'spacy.CandidateGenerator.v1'}, } nlp.add_pipe("entity_linker", config=config)
Setting | Type | Description | Default |
---|---|---|---|
labels_discard |
Iterable[str] |
NER labels that will automatically get a "NIL" prediction. | [] |
incl_prior |
bool | Whether or not to include prior probabilities from the KB in the model. | True |
incl_context |
bool | Whether or not to include the local context in the model. | True |
model |
Model |
The model to use. | EntityLinker |
kb_loader |
Callable[[Vocab], KnowledgeBase] |
Function that creates a KnowledgeBase from a Vocab instance. |
An empty KnowledgeBase with entity_vector_length 64. |
get_candidates |
Callable[[KnowledgeBase, "Span"], Iterable[Candidate]] |
Function that generates plausible candidates for a given Span object. |
Built-in dictionary-lookup function. |
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/entity_linker.py
EntityLinker.__init__
Example
# Construction via add_pipe with default model entity_linker = nlp.add_pipe("entity_linker") # Construction via add_pipe with custom model config = {"model": {"@architectures": "my_el.v1"}} entity_linker = nlp.add_pipe("entity_linker", config=config) # Construction via add_pipe with custom KB and candidate generation config = {"kb_loader": {"@assets": "my_kb.v1"}, "get_candidates": {"@assets": "my_candidates.v1"},} entity_linker = nlp.add_pipe("entity_linker", config=config) # Construction from class from spacy.pipeline import EntityLinker entity_linker = EntityLinker(nlp.vocab, model)
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
nlp.add_pipe
.
Note that both the internal KB as well as the Candidate generator can be customized by providing custom registered functions.
Name | Type | Description |
---|---|---|
vocab |
Vocab |
The shared vocabulary. |
model |
Model |
The Model powering the pipeline component. |
name |
str | String name of the component instance. Used to add entries to the losses during training. |
keyword-only | ||
kb_loader |
Callable[[Vocab], KnowledgeBase] |
Function that creates a KnowledgeBase from a Vocab instance. |
get_candidates |
Callable[[KnowledgeBase, "Span"], Iterable[Candidate]] |
Function that generates plausible candidates for a given Span object. |
labels_discard |
Iterable[str] |
NER labels that will automatically get a "NIL" prediction. |
incl_prior |
bool | Whether or not to include prior probabilities from the KB in the model. |
incl_context |
bool | Whether or not to include the local context in the model. |
EntityLinker.__call__
Apply the pipe to one document. The document is modified in place, and returned.
This usually happens under the hood when the nlp
object is called on a text
and all pipeline components are applied to the Doc
in order. Both
__call__
and pipe
delegate to the predict
and
set_annotations
methods.
Example
doc = nlp("This is a sentence.") entity_linker = nlp.add_pipe("entity_linker") # This usually happens under the hood processed = entity_linker(doc)
Name | Type | Description |
---|---|---|
doc |
Doc |
The document to process. |
RETURNS | Doc |
The processed document. |
EntityLinker.pipe
Apply the pipe to a stream of documents. This usually happens under the hood
when the nlp
object is called on a text and all pipeline components are
applied to the Doc
in order. Both __call__
and
pipe
delegate to the
predict
and
set_annotations
methods.
Example
entity_linker = nlp.add_pipe("entity_linker") for doc in entity_linker.pipe(docs, batch_size=50): pass
Name | Type | Description |
---|---|---|
stream |
Iterable[Doc] |
A stream of documents. |
keyword-only | ||
batch_size |
int | The number of texts to buffer. Defaults to 128 . |
YIELDS | Doc |
Processed documents in the order of the original text. |
EntityLinker.begin_training
Initialize the pipe for training, using data examples if available. Returns an
Optimizer
object.
Example
entity_linker = nlp.add_pipe("entity_linker", last=True) optimizer = entity_linker.begin_training(pipeline=nlp.pipeline)
Name | Type | Description |
---|---|---|
get_examples |
Callable[[], Iterable[Example]] |
Optional function that returns gold-standard annotations in the form of Example objects. |
keyword-only | ||
pipeline |
List[Tuple[str, Callable]] |
Optional list of pipeline components that this component is part of. |
sgd |
Optimizer |
An optional optimizer. Will be created via create_optimizer if not set. |
RETURNS | Optimizer |
The optimizer. |
EntityLinker.predict
Apply the pipeline's model to a batch of docs, without modifying them. Returns
the KB IDs for each entity in each doc, including NIL
if there is no
prediction.
Example
entity_linker = nlp.add_pipe("entity_linker") kb_ids = entity_linker.predict([doc1, doc2])
Name | Type | Description |
---|---|---|
docs |
Iterable[Doc] |
The documents to predict. |
RETURNS | List[str] |
The predicted KB identifiers for the entities in the docs . |
EntityLinker.set_annotations
Modify a batch of documents, using pre-computed entity IDs for a list of named entities.
Example
entity_linker = nlp.add_pipe("entity_linker") kb_ids = entity_linker.predict([doc1, doc2]) entity_linker.set_annotations([doc1, doc2], kb_ids)
Name | Type | Description |
---|---|---|
docs |
Iterable[Doc] |
The documents to modify. |
kb_ids |
List[str] |
The knowledge base identifiers for the entities in the docs, predicted by EntityLinker.predict . |
EntityLinker.update
Learn from a batch of Example
objects, updating both the
pipe's entity linking model and context encoder. Delegates to
predict
.
Example
entity_linker = nlp.add_pipe("entity_linker") optimizer = nlp.begin_training() losses = entity_linker.update(examples, sgd=optimizer)
Name | Type | Description |
---|---|---|
examples |
Iterable[Example] |
A batch of Example objects to learn from. |
keyword-only | ||
drop |
float | The dropout rate. |
set_annotations |
bool | Whether or not to update the Example objects with the predictions, delegating to set_annotations . |
sgd |
Optimizer |
The optimizer. |
losses |
Dict[str, float] |
Optional record of the loss during training. Updated using the component name as the key. |
RETURNS | Dict[str, float] |
The updated losses dictionary. |
EntityLinker.create_optimizer
Create an optimizer for the pipeline component.
Example
entity_linker = nlp.add_pipe("entity_linker") optimizer = entity_linker.create_optimizer()
Name | Type | Description |
---|---|---|
RETURNS | Optimizer |
The optimizer. |
EntityLinker.use_params
Modify the pipe's model, to use the given parameter values. At the end of the context, the original parameters are restored.
Example
entity_linker = nlp.add_pipe("entity_linker") with entity_linker.use_params(optimizer.averages): entity_linker.to_disk("/best_model")
Name | Type | Description |
---|---|---|
params |
dict | The parameter values to use in the model. |
EntityLinker.to_disk
Serialize the pipe to disk.
Example
entity_linker = nlp.add_pipe("entity_linker") entity_linker.to_disk("/path/to/entity_linker")
Name | Type | Description |
---|---|---|
path |
str / Path |
A path to a directory, which will be created if it doesn't exist. Paths may be either strings or Path -like objects. |
keyword-only | ||
exclude |
Iterable[str] |
String names of serialization fields to exclude. |
EntityLinker.from_disk
Load the pipe from disk. Modifies the object in place and returns it.
Example
entity_linker = nlp.add_pipe("entity_linker") entity_linker.from_disk("/path/to/entity_linker")
Name | Type | Description |
---|---|---|
path |
str / Path |
A path to a directory. Paths may be either strings or Path -like objects. |
keyword-only | ||
exclude |
Iterable[str] |
String names of serialization fields to exclude. |
RETURNS | EntityLinker |
The modified EntityLinker object. |
Serialization fields
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the exclude
argument.
Example
data = entity_linker.to_disk("/path", exclude=["vocab"])
Name | Description |
---|---|
vocab |
The shared Vocab . |
cfg |
The config file. You usually don't want to exclude this. |
model |
The binary model data. You usually don't want to exclude this. |
kb |
The knowledge base. You usually don't want to exclude this. |